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Physical amplitudes

• Any SM 2-light-hadron amplitude can be written 

• If penguins somewhat suppressed, !D=1 are tree 
and !S=1 penguin dominated (generically)

• Theory (factorization, 1/N) provides suitable penguin 
suppression (C.W. Bauer, C.D. Lü talks)

• for CKM angles, either eliminate P (or T) using data
(yesterday’s talks), or attempt to compute the ratios
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Why calculate?

• tree-dominated modes ("", "#, ##):
S+- = sin(2$) in no-penguin limit

• knowledge of P/T “pollution” determines $ (%), 
without need for isospin constructions, SU(3), etc.

• penguin-dominated modes:
S(&K, '’K, "K, (K, ...) <-> sin(2)) in no-tree limit.

•  T/P determines SM shifts; comparison of             
sin(2))J/* K and sin(2))peng beyond average

• beyond CKM: more theory => more independent 
observables (e.g. direct CP asymmetries in "K) => 
more probes of new physics



Topological amplitudes
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Figure 1: Emission, annihilation and emission-annihilation topologies of Wick contractions in the

matrix elements of operators Qi.
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color-allowed/
-suppressed tree
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Figure 2: Penguin, penguin-emission, penguin-annihilation and double-penguin-annihilation topolo-

gies of Wick contractions in the matrix elements of operators Qi.
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Qi = Qu
1,2

Q
i = Q

3...12

Qi = Qu
1,2, Q3...12

up-penguin
(incl. also 

penguin ann., 
excl. EWP)

a1,2

Qi = Qu
1,2 b1,2

ex.: −A(B̄0 → π
0
π

0) = V
∗

udVub [Aππ (a2(ππ) − α
u
4 (ππ)) + Bππb1(ππ)]

+V
∗

cdVcb terms + EWP terms

[from Buras&Silvestrini hep-ph/9812392]

α
u

4

tree annihilation

[T, C][E1,2]

[E, A][A2,1]

[Put][P1 − P
GIM
1 ]



Theory approaches

• 1/N expansion (only counting rules)

• +QCD/mB expansion (QCDF/SCET; pQCD): 
computation of important pieces possible

• QCD light-cone sum rules: partly complementary set 
of calculable amplitudes; constrain “inputs” to +/mB

• SU(3) [U-spin] relates !D=1 and !S=1: e.g. trees in 
"K from ""; penguins in ## from #K*, etc.
(ms/+QCD corrections; annihilation contamination)

a1/T/E1 a2/C/E2 α
u

4 b1/E/A2 b2/A/A1

1/N 1 1/N 1/N 1/N 1 [?]

!/mB 1 1 1 !/mB !/mB



QCDF/SCET/pQCD

                             

                                      

To leading power in          long-distance interactions look like

- SCET, QCDF, pQCD agree on this (but implementations differ)

- a limit of QCD, not a model

- model dependence enters at subleading power
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 Beneke, Buchalla, Neubert, Sachrajda;
Keum, Li, Sanda; Chay, Kim; 

Bauer, Pirjol, Rothstein, Stewart

“nonfactorizable” gluons 
are perturbative



Color-allowed tree [QCDF]

• computation of O($s) BBNS 99-01 and O($s
2) pieces

• translation to SCET approach (BPRS) 
straightforward (change of operator basis)

• very similar for other PP, PV, VP, VLVL modes

• naive factorization provides an excellent 
approximation; corrections up to NNLO tiny; theory 
uncertainties small (few percent)

[arXiv:0801.1833v1]

Schematically,

Qi =

∫
dt T I

i (t)[χ̄(tn−)χ(0)]
[
CA0 [ξ̄(0)hv(0)] +

1

mb

∫
ds CB1(s)[ξ̄(0)D⊥hc1(sn+)hv(0)]

]

+
1

mb

∫
dt ds HII

i (t, s) [χ̄(tn−)χ(0)][ξ̄(0)D⊥hc1(sn+)hv(0)], (34)

where certain Wilson lines and Dirac structures have been suppressed. The particular choice of heavy-

light current in the first line is designed to reproduce the full QCD (not SCET) form factors; other

choices of operator basis as, for instance, in the “SCET approach” [220], simply result in a reshuffling

of contributions between the T I
i and HII

i terms. The product structure of either term together with the

absence of soft-collinear interactions from the SCETI Lagrangian at leading power suggests factorization

of both terms’ hadronic matrix elements into a light-cone distribution amplitude 〈M2|[χ̄χ]|0〉 ∝ φM2 and

(respectively) the QCD form factor FBM1 and a SCETI nonlocal “form factor” ΞBM1(s) [249]. This
expectation is indeed borne out by the finiteness of the convolutions, found in all available computations.

The jet function J (see eq. (32)) arises in matching the B1-type current from SCETI onto SCETII

and is known to NLO [224–227]. This matching takes the form (in position space)

∫
d 4xT

(

L(1)
SCETI

(x)[ξ̄(0)D⊥hc1(sn+)hv(0)]

)

=

∫
dw drJ(s, r, w)[ξ̄(rn+)ξ(0)][q̄s(wn−)hv(0)],

(35)

where we again have suppressed Dirac structures and Wilson lines. Fourier transforming with respect to

s, r, w results in J(z, u,ω) entering eq. (31).

At leading power, all one-loop corrections to HII
i and J and part of the two-loop contributions to

T I
i are now available. The current-current corrections toHII

i for the V−A×V−A operators (i = 1, 2) have
been found in Refs. [228, 250, 251]. The imaginary parts of the corresponding two-loop contributions to

T I
i have been computed in Ref. [252, 253]. These are sufficient to obtain the topological tree amplitudes

a1 and a2, involving the large Wilson coefficients C1 ∼ 1.1 and C2 ∼ −0.2, at NNLO up to an O(α2
s)

correction to the real part of T I
i . In particular, the imaginary part of a1,2 is now fully known at O(α2

s).
As it is first generated at O(αs), this represents a first step towards an NLO prediction of direct CP
asymmetries in QCD factorization. Spectator-scattering corrections from the remaining V−A × V+A
operators, as well as penguin contractions and magnetic penguin insertions, have been computed in

Ref. [254]. Together they constitute the QCD penguin amplitudes ap
4 (p = u, c) and the colour-allowed

and colour-suppressed electroweak penguin amplitudes ap
9 ± ap

7 and ap
10, where the sign in front of ap

7
depends on the spins of the final-state mesons, and certain numerically enhanced power corrections (ap

6,8,

annihilation, etc.) are omitted (see, however, section 2.2.3.2).

2.2.3.2 Phenomenological impact and final remarks

Numerical estimates of the ai and their uncertainties require estimating 1/mb corrections, some of which

are “chirally enhanced” for pseudoscalars in the final state. Of these, the scalar penguin ap
6, and its elec-

troweak analog ap
8, happen to factorize atO(αs). NNLO corrections are not known and their factorization

is an open question. Here we use the known O(αs) results. Annihilation and twist-3 spectator interac-
tions do not factorize already at LO (O(αs)). The former are not included in any ai but enter the physical

decay amplitudes. The latter have flavour structure identical to the ai and are by convention included as

estimates. For the colour-allowed and colour-suppressed tree amplitudes a1 and a2, we find

a1(ππ) = 1.015 + [0.025 + 0.012i]V + [? + 0.027i]V V

−
[ rsp

0.485

]{
[0.020]LO + [0.034 + 0.029i]HV + [0.012]tw3

}

= 0.975+0.034
−0.072 + (0.010+0.025

−0.051)i, (36)

39

Hill, Becher, Lee, Neubert 2004; Beneke, Yang 2005; Kirilin 2005; 
Beneke, SJ 2005, 2006; Kivel 2006; Pilipp 2007; Bell 2007

form-factor term

spectator 
scattering



Color-suppressed tree

• computation identical to a1, but different color 
factors, Wilson coefficients

• naive factorization fails badly
Size of a2 depends on a hadronic normalization rsp

(mainly the B wave function inverse moment 1/,B)

• pQCD predictions generically agree with QCDF, 
within errors. O($s

2) result for c.s.t.                         
finds factor 3 enhancement & large imaginary part
- employs NLO BBNS kernel, renormalized at very 
low scales (< 1GeV). Justified?

a2(ππ) = 0.184 − [0.153 + 0.077i]V + [? − 0.049i]V V

+
[ rsp

0.485

]{
[0.122]LO + [0.050 + 0.053i]HV + [0.071]tw3

}

= 0.275+0.228
−0.135 + (−0.073+0.115

−0.082)i. (37)

In each expression, the first line gives the form-factor (vertex) contribution, the second line the spectator-

scattering contribution, and the third line their sum with an estimate of the theoretical uncertainties due

to hadronic input parameters (form factors, LCDAs, quark masses), power corrections, and neglected

higher-order perturbative corrections as explained in detail in Ref. [254], where also the input parameter

ranges employed here are given. The first two lines in Eqs. (36) and (37) are decomposed into the

tree (naive factorization, α0
s), one-loop (V ), and two-loop (V V ) vertex correction (the question marks

denote unknown real parts); tree (αs, LO), one-loop (α2
s , HV ), and twist-3 power correction (tw3)

to spectator scattering. The prefactor rsp = (9fM1 f̂B)/(mb FBM1λB) encapsulates the bulk of the
hadronic uncertainties of the spectator-scattering term. Numerically, for a1 the corrections are, both

individually and in their sum, at the few-percent level, such that a1 is very close to 1 and to the naive-

factorization result. On the other hand, individual corrections to a2 are large, with a near cancellation

between naive factorization and the one-loop vertex correction. a2 is thus especially sensitive to spectator

scattering and to higher-order vertex corrections. That these are all important is seen from the V V , LO,
and HV numbers in eq. (37).

Analogous expressions can be given for the remaining amplitude parameters ap
3 . . . ap

10 [254], ex-

cept that no two-loop vertex corrections are known. Qualitatively, NNLO spectator-scattering corrections

are as important for the leading-power, but small (electroweak) penguin amplitudes ap
3,5,7,10 as they are

for a2 but are found to be small for the large electroweak penguin amplitude ap
9. Corrections to the QCD

penguin amplitude ap
4 are also small, in spite of the involvement of the large Wilson coefficient C1. This

is due to a numerical cancellation, which may be accidental. The scalar QCD and electroweak penguin

amplitudes ap
6 and ap

8 are power suppressed but “chirally enhanced”. NNLO corrections to them are

currently unknown but might involve sizable contributions proportional to C1, unless a similar numerical

cancellation as in the case of ap
4 prevents this. This would be relevant for direct CP asymmetries in the

πK system and elsewhere. For a more complete discussion, see Ref. [254].

A good fraction of NNLO corrections to the QCD factorization formula are now available. While

the perturbation expansion is well-behaved in all cases, some of these corrections turn out to be signif-

icant, particularly those to the colour-suppressed tree and (electroweak) penguin amplitudes. Further

important corrections to the QCD and colour-suppressed EW penguin amplitudes proportional to C1

may enter through the chirally-enhanced power corrections ap
6 and ap

8, making their NNLO calculation

an important goal.

2.2.4 QED corrections to hadronic B decays

2.2.4.1 Introduction

The large amount of data collected so far at B factories has allowed to reach a statistical accuracy on

B decays into pairs of (pseudo)scalars at a level where electromagnetic effects cannot be neglected

anymore [255, 256]. On one hand, a correct simulation of the unavoidable emission of photons from

charged particles has to be included in Monte Carlo programs in order to evaluate the correct efficiency.

On the other hand, a clear definiton of the effective cut on (soft) photon spectra is essential for a consistent

comparison both between theory and experiments and between results from different experiments.

We discuss the theoretical and experimental treatment of radiative corrections in hadronic B de-

cays. We present analytical expressions to describe the leading effects induced by both real and virtual

(soft) photons in the generic process H → P1P2(γ), where both H and P1,2 are scalar or pseudoscalar

particles. We then discuss the procedures to be adopted in experimental analyses for a clear definition of

the observables.

40

Li, Mishima, Sanda 2005

form-factor 
term:cancellation

spectator scattering dominates



Can one constrain ,B?

• LC sum rules, shape models give ,B=(350-600) MeV

- how reliable are the quoted uncertainties 

• Babar [0704.1478] reports ,B ≳ 600 MeV from

non-observation of B - % l .
- uses LO factorization result [NLO known],
- in part of the signal region, % rather soft
Q: How would bound change for tighter cut, NLO ?
If confirmed, it implies an upper bound on the QCDF 
(or SCET) prediction for a2 (C)

• Alternatively, can fit ,B (and form factors) to "" data. 
Implicit in SCET fits; scenario “S4” (BBNS) or 
“G” (Beneke, SJ), one needs ,B ~ 200 MeV

Braun; Khodjamirian et al; Lee, Neubert, ...



up-penguin

• contributions from both penguin contractions
of Q1(u) and from QCD-penguin operators

• found small in all approaches (1/N counting, pQCD, 
QCDF/SCET); partial NNLO known in QCDF/SCET; 
partial NNLO in pQCD

• unlike the charming penguin, no special treatment of 
u loop in SCET approach

SJ; Jain, Rothstein, Stewart; Li, Mishima, Sanda



annihilation
•        power-suppressed in heavy-quark limit -- but 

come with large Wilson coefficients
- incalculable in QCDF/SCET (endpoint divergence:
  not short-distance-dominated)
- pQCD: Sudakov suppression of LD contributions

•     (enters "" amplitudes) 1/N suppressed

•      (in "K (also "#) amplitudes) not 1/N suppressed. 
However, leading (in 1/N) piece “factorizable” and 
suppressed by current conservation (explicit in BBNS 
annihilation model, in pQCD, in LCSR calculation)

b1,2

b1

b2

[Khodjamirian, Mannel, Melcher, Melic hep-ph/0509049]
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matrix elements of operators Qi.
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Summary predictions

• Of the amplitudes relevant to the (physical) “trees”,
- a1/T/E1 and       / Put are predictable, hence so are 
  the physical color-allowed trees

- a2/C/E2 has O(1) uncertainty, knowledge (or
  bound) on normalization factor may constrain it

- b2/A/A1 (relevant to B+ - "K decays) not
  computable but power-suppressed. Should be
  numerically suppressed relative to T

• C/T, and in particular (T+C)/T, has small strong 
phase (for any isospin-set of PP, VP, PV, VLVL 
modes) - constrained to 0 in the fits in the SCET 
approach

α
u

4

Bauer,Pirjol,Rothstein,Stewart;  Williamson,Zupan, ...



• requires computation of Re(P/T)

• similar for sin(2)) from b-s peng (Cai-Dian’s talk)

γ determination from time-dependent CP asymmetry

0 25 50 75 100 125 150 175
!1

!0.5

0

0.5

1

PSfrag replacements

γ [deg]

Sππ

0 25 50 75 100 125 150 175
!1

!0.5

0

0.5

1

PSfrag replacements

γ [deg]

Sπρ

0 25 50 75 100 125 150 175
!1

!0.5

0

0.5

1

PSfrag replacements

γ [deg]

SL,ρρ

Sππ = −0.58± 0.09

⇒ γ = (65 +12
−8 )◦

Sπρ = 0.03± 0.09

⇒ γ = (69 +6
−6)

◦

Sρρ = −0.13± 0.19

⇒ γ = (69 +8
−8)

◦

Mutually consistent

γ = (68± 4)◦

and consistent with the
standard mixing-based fit
(UTfit, 2007):

γ = (61± 5)◦

M. Beneke (RWTH Aachen) CERN, May 15, 2008 27 / 36

[M. Beneke, talk at CERN theory institute]



Comparison with data

• "K puzzle  (QCDF/SCET version)
(T+C)/T real implies A(K+"0) / A(K+"-), expt. 50
could be NP, for example BSM electroweak penguin

• C small (,B large) implies small BR("0"0). Recent 
Babar measurement (1.83±0.21±0.13)10-6 far out
small-,B scenario G: (                                        )10-6

could be NP in principle

• fits of some amplitudes to data possible, many 
recent works; also talk by Pierini.

• fits (unsurprisingly) lead to large C, often complex
- maybe a2 receives very large power correction.
- annihilation b2 contributes to physical C, but also 
generates A("+K0) generically -- not observed

Gronau et al; Buras et al; Baek et al; Yoshikawa; Gronau, Rosner;  Agashe et al; 
Grossman et al; Feldmann et al;,...

5.3 B → ππ branching fractions

We confront our new (partial) NNLO results with the experimental data on the three
tree-dominated B → ππ branching ratios. The B → ππ amplitudes are given by

√
2AB−→π−π0 = i

GF√
2
m2

Bfπf
Bπ
+ (0)VubV

∗
ud

[

α1 + α2

]

,

AB̄0→π+π− = i
GF√

2
m2

Bfπf
Bπ
+ (0)

{

VubV
∗
ud

[

α1 + α̂u
4

]

+ VcbV
∗
cd α̂c

4

}

,

−AB̄0→π0π0 = i
GF√

2
m2

Bfπf
Bπ
+ (0)

{

VubV
∗
ud

[

α2 − α̂u
4

]

− VcbV
∗
cd α̂c

4

}

, (64)

not showing some smaller amplitudes that are taken into account in the numerical evalu-
ation of the branching fractions below. The theoretical computation includes the 1-loop
correction to spectator scattering in the tree amplitudes, α1,2, but not to the QCD
penguin amplitudes α̂u,c

4 . For these (and the smaller amplitudes not shown) the NLO
expression [1, 3] updated to include the scale-dependent parameters aπ

2 and f̂B in the
LO approximation for spectator scattering is used.

The standard input parameter set does not provide an adequate description of B →
ππ data. Rather the data favours a smaller value of |Vub| fBπ

+ (0), which reduces the overall
normalization of the amplitudes, and a significantly larger contribution from spectator
scattering, which increases α2 (see Figure 5) [3]. We find that the parameter choice ‘G’
with

|Vub| fBπ
+ (0) = 8.10 · 10−4 = 0.775

[

|Vub| fBπ
+ (0)

]

def
, rsp = 1.96 [rsp]def (65)

and aπ
2 (2 GeV) = 0.3 yields a good description of data. The required parameter modifi-

cation is most likely related to a smaller value for the B → π form factor and a smaller
value of λB, but other small modifications may add up to the combined effect. The
new parameter selection ‘G’ is similar to scenario S4 defined in [3], and falls within the
ranges for the individual parameters specified in Table 1. With (65) we calculate the
CP-averaged branching fractions

106 Br(B− → π−π0) = 5.5+0.3
−0.3(CKM)+0.5

−0.4(hadr.)+0.9
−0.8(pow.) [5.5 ± 0.6],

106 Br(B̄0 → π+π−) = 5.0+0.8
−0.9(CKM)+0.3

−0.5(hadr.)+1.0
−0.5(pow.) [5.0 ± 0.4], (66)

106 Br(B̄0 → π0π0) = 0.73+0.27
−0.24(CKM)+0.52

−0.21(hadr.)+0.35
−0.25(pow.) [1.45 ± 0.29]

with the experimental averages reproduced in brackets [20]. The corresponding tree
amplitudes α1 = 0.92 − 0.05i and α2 = 0.51 + 0.03i are shown by the points marked
‘G’ in Figure 5, which implies that the ratio of the colour-suppressed to colour-allowed
amplitude C/T = α2/α1 = 0.55 + 0.07i is large. By construction the branching frac-
tions with charged pions in the final state are in excellent agreement with data. The
B → π0π0 branching fraction is still somewhat low, but the theoretical uncertainty is

25



Outlook

• theory calculations in the heavy-quark limit at the 
NNLO / O($s

2) stage. Perturbation theory stable, 
most data described within errors

• competitive determination of % from b-d transitions

• some puzzles exist, which may be new physics or 
unexpectedly large power-suppressed amplitudes

• experimental input on radiative leptonic decays can 
help with hadronic decays!

• theory uncertainties will (after NNLO completed) be 
dominated by uncertain power corrections, need 
conceptual breakthrough (endpoint divergences)




