Indirect constraints on the (C)MSSM parameter space

Frédéric Ronga

ETH Zurich - Switzerland

CKM Workshop, Rome - September 11, 2008

The LHC has turned on!

Busy beam "event" lighting up the CMS detector, Sep. 10, 2008

- last moment to circumscribe the SUSY playground for LHC...
 - \Rightarrow global fit to today's experimental data

Using external constraints: the CMSSM case

• Today's external constraints

- Low Energy (precision) data:
 - Flavour Physics (in particular B Physics)
 - Other low-energy observables (e.g., g 2)
- High energy (precision) data:
 - Precision electroweak observables (e.g., m_{top}, m_W)
- Cosmology/Astroparticle data:
 - e.g., relic density
- How to exploit this information?
 - ⇒ state-of-the-art theoretical predictions ("tools")
 - \Rightarrow a framework to consistently combine the tools

Collaboration between experiment and theory

Buchmüller, Oliver (CERN) – Exp. De Roeck, Albert (CERN & Uni. Antwerpen) – Exp. Flächer, Henning (CERN) – Exp. Isidori, Gino (INFN Frascati) – Theo. Paradisi, Paride (Tech. Uni. München) – Theo. Weiglein, Georg (Durham) – Theo. Cavanaugh, Richard (Uni. of Florida) – Exp. Ellis, John (CERN) – Theo. Heinemeyer, Sven (Santander) – Theo. Olive, Keith (Uni. of Minnesota) – Theo. Ronga, Frédéric (CERN) – Exp.

Combining today's constraints

Common framework for indirect constraints

- Consistency *Relies on the* SUSY Les Houches Accord *(SLHA)*
- Modularity Compare calculations Add/remove predictions
- State-of-the art calculations Direct use of code from experts

Use-case: fit today's data (χ^2 minimisation)

- ⇒ Constrain SUSY parameter space
- ⇒ Even more interesting when combined with discoveries!...
 - Various modes:
 - Overall best minimum (Minuit)
 - χ^2 scan
 - Markov chain Monte Carlo

χ^2 fit of the CMSSM parameters

• Multi-parameter χ^2 fit:

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{j}^{M} \frac{(f_{\mathsf{SM}_{j}}^{\mathsf{obs}} - f_{\mathsf{SM}_{j}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{j}})^{2}}$$

- C_i: experimental constraint
- P_i: predicted value for a given CMSSM parameter set
- fitting for all CMSSM parameters:
 - **m_0** common scalar mass (at GUT scale)
 - $m_{1/2}$ common gaugino mass (at GUT scale)
 - a₀ tri-linear mass parameter (at GUT scale)
 - **tan** β ratio of Higgs vacuum expectation values
 - sign(μ) sign of Higgs mixing parameter (fixed)
- including relevant SM uncertainties (m_{top} , m_Z , $\Delta \alpha_{had}^{(5)}$)

Details in O. Buchmüller et al., PLB 657/1-3 pp. 87-94

List of available predictions [relevant today already]

Low energy ob	servables	Electroweak observables					
$R(b ightarrow s \gamma)$	Isidori & Paradi	si micrOMEGAs	$\Delta \alpha_{\rm had}^{(5)}(m_Z^2)$	SUSY-Pope			
$R(B \to \tau \nu)$	Isidori & Paradi	si	mZ	SUSY-Pope			
$BR(K \rightarrow \tau \nu)$	Isidori & Paradi	si	$\sigma_{\rm had}^0$	SUSY-Pope			
$R(B \to X_s \ell \ell)$	Isidori & Paradi	si	R_l	SUSY-Pope			
$R(\mathbf{K} \to \pi \nu \bar{\nu})$	Isidori & Paradi	si	$A_{ m fb}(\ell)$	SUSY-Pope			
$BR(B_s \to \ell \ell)$	Isidori & Paradi	si micrOMEGAs	$A_{\ell}(P_{\tau})$	SUSY-Pope			
$BR(B_d o \ell \ell)$	Isidori & Paradi	si	R _b	SUSY-Pope			
$R(\Delta m_s)$	Isidori & Paradi	R _c	SUSY-Pope				
$R(\Delta m_s)/R(\Delta m$	d) Isidori & Paradi	$A_{\rm fb}(b)$	SUSY-Pope				
$R(\Delta m_K)$	Isidori & Paradi	si	$A_{\rm fb}(c)$	SUSY-Pope			
$R(\Delta_0(K^*\gamma))$	${\tt SuperIso}^*$		Ab	SUSY-Pope			
$\Delta(g-2)$	FeynHiggs		Ac	SUSY-Pope			
Higgs sector of	sorvables	$A_{\ell}(SLD)$	SUSY-Pope				
light	E our li grad		$\sin^2 \theta_{\rm w}^{\ell}(Q_{\rm fb})$	SUSY-Pope			
m _h	reynniggs		m _W	SUSY-Pope			
Cosmology obs	ervables		mt	SUSY-Pope			
Ωh^2	micrOMEGAs DarkSUSY*	DarkSUSY		st not used in this study			
°р	Darmousi						

F.J. Ronga (ETHZ)

CMSSM

CKM2008 7 / 14

What's new?

- Extensive sampling of the CMSSM parameter space:
 - 25 million Markov chain Monte Carlo points
 - all constraints included (in particular from flavour physics)
 - overall best fit point determined using Minuit
- All constraints updated to most recent values
 - W and top masses (latest Tevatron results)

B physics
$$(B \rightarrow \tau \nu, b \rightarrow s \gamma)$$

- \Rightarrow Prospects for LHC discoveries
- \Rightarrow Influence of various constraints
 - "Re-weighting" of χ^2 on 25 million points
 - removal/inclusion of constraints, scaling of constraints' error

Details in: O. Buchmüller et al., arXiv:0808.4128

Prospects for LHC discoveries

Sparticle searches

5σ discovery reach

Sparticle searches

5σ discovery reach

Including direct searches at LEP and Tevatron (dashed areas).

Prediction for $B_s \rightarrow \mu \mu$

Best fit point: BR($B_s \rightarrow \mu\mu$) = 2.9 × 10⁻⁹

Prospects for LHC discoveries

Prediction for $B_s \rightarrow \mu \mu$

Best fit point: BR($B_s \rightarrow \mu \mu$) = 2.9 × 10⁻⁹

If CMSSM (and minimal flavour violation) is realised in nature this will not be a free lunch...

F.J. Ronga (ETHZ)

Prospects for LHC discoveries

Prediction for $B_s \rightarrow \mu \mu$

Best fit point: BR($B_s \rightarrow \mu\mu$) = 2.9 × 10⁻⁹

If CMSSM (and minimal flavour violation) is realised in nature this will not be a free lunch...

But: still an order of magnitude to go. Plenty of room for NP discovery!

F.J. Ronga (ETHZ)

CKM2008 10 / 14

Sensitivity to individual observables

How big is the influence of cosmological data?

Compare 95% CL with/without WMAP constraint

Moderate influence

How big is the influence of $b \rightarrow s\gamma$?

Compare 95% CL in various error scaling scenarios

- Reducing the error has a big effect on aneta
- Very sensitive observable

Quantifying the sensitivity

Percentage change in contour content as a function of relative uncertainty

- Importance of $g-2, b \rightarrow s\gamma$
- $B \rightarrow \tau \nu$ fairly sensitive
- Ωh² not so sensitive in these projections

- New global fits to the CMSSM
 - CPU (and disk) intensive 25 million MCMCs
 - latest experimental and theoretical input
- Prospects for the CMSSM at LHC
 - \Rightarrow the end of a long story?
- Sensitivity to individual observables
 - (g 2)_{μ} and BR($b \rightarrow s\gamma$) are the winners
 - BR($B_u \rightarrow \tau \nu_{\tau}$) also makes a difference
 - **moderate influence of** Ωh^2
- Now we'll be busy understanding new data (back to reality...)

- New global fits to the CMSSM
 - CPU (and disk) intensive 25 million MCMCs
 - latest experimental and theoretical input
- Prospects for the CMSSM at LHC
 - \Rightarrow the end of a long story?
- Sensitivity to individual observables
 - $(g-2)_{\mu}$ and ${\sf BR}(b o s\gamma)$ are the winners
 - BR $(B_u \rightarrow \tau \nu_{\tau})$ also makes a difference
 - moderate influence of Ωh²
- Now we'll be busy understanding new data (back to reality...)

- New global fits to the CMSSM
 - CPU (and disk) intensive 25 million MCMCs
 - latest experimental and theoretical input
- Prospects for the CMSSM at LHC
 - \Rightarrow the end of a long story?
- Sensitivity to individual observables
 - $(g-2)_{\mu}$ and $\mathsf{BR}(b o s\gamma)$ are the winners
 - BR($B_u \rightarrow \tau \nu_{\tau}$) also makes a difference
 - moderate influence of Ωh^2
- Now we'll be busy understanding new data (back to reality...)

- New global fits to the CMSSM
 - CPU (and disk) intensive 25 million MCMCs
 - latest experimental and theoretical input
- Prospects for the CMSSM at LHC
 - \Rightarrow the end of a long story?
- Sensitivity to individual observables
 - $(g-2)_{\mu}$ and BR $(b \rightarrow s\gamma)$ are the winners • BR $(B_u \rightarrow \tau \nu_{\tau})$ also makes a difference
 - moderate influence of Ωh^2
- Now we'll be busy understanding new data (back to reality...)

Backup slides

Experimental constraints

Observable	Constraint	Add. Th. Unc.		
$m_W[GeV]$	80.399 ± 0.025	0.010		
$oldsymbol{a}_{\mu}^{\mathrm{exp}}-oldsymbol{a}_{\mu}^{\mathrm{SM}}$	$(30.2\pm 8.8) imes 10^{-10}$	$2.0 imes10^{-10}$		
m_h [GeV]	> 114.4 (see text)	3.0		
$BR^{\mathrm{exp}}_{\mathrm{b}\to\mathrm{s}\gamma}/\mathrm{BR}^{\mathrm{SM}}_{\mathrm{b}\to\mathrm{s}\gamma}$	$1.117\pm0.076_{\rm exp}\pm0.082_{\rm th(SM)}$	0.050		
m_t [GeV]	172.4 ± 1.2	-		
$\Omega_{ m CDM} h^2$	0.1099 ± 0.0062	0.012		
$BR(B_s \to \mu^+ \mu^-)$	$< 4.7 imes 10^{-8}$	$0.02 imes10^{-8}$		
$BR^{\mathrm{exp}}_{\mathrm{B}\to\tau\nu}/\mathrm{BR}^{\mathrm{SM}}_{\mathrm{B}\to\tau\nu}$	$1.15\pm0.40_{\rm [exp+th]}$	-		
$BR(B_d \rightarrow \mu^+ \mu^-)$	$< 2.3 imes 10^{-8}$	$0.01 imes10^{-9}$		
$BR^{exp}_{B\to X_s\ell\ell}/BR^{SM}_{B\to X_s\ell\ell}$	0.99 ± 0.32	_		
$BR^{\mathrm{exp}}_{\mathcal{K}\to\mu\nu}/\mathrm{BR}^{\mathrm{SM}}_{\mathcal{K}\to\mu\nu}$	$1.008\pm0.014_{\rm [exp+th]}$	_		
$BR^{\mathrm{exp}}_{\mathcal{K}\to\pi\nu\bar{\nu}}/\mathrm{BR}^{\mathrm{SM}}_{\mathcal{K}\to\pi\nu\bar{\nu}}$	< 4.5	-		
$\Delta M_{B_s}^{ m exp}/\Delta M_{B_s}^{ m SM}$	$1.11\pm 0.01_{\rm exp}\pm 0.32_{\rm th(SM)}$	_		
hline $\frac{(\Delta M_{B_s}^{exp}/\Delta M_{B_s}^{SM})}{(\Delta M_{B_d}^{exp}/\Delta M_{B_d}^{SM})}$	$1.09\pm 0.01_{\rm exp}\pm 0.16_{\rm th(SM)}$	_		
$\Delta \epsilon_{K}^{\mathrm{exp}}/\Delta \epsilon_{K}^{\mathrm{SM}}$	$0.92\pm0.14_{\rm [exp+th]}$	_		

F.J. Ronga (ETHZ)

CMSSM and SM EWK fits [previous study]

CMS		SM	10 ^{meas} -0 ^{fit} 1/0 ^{meas}			SM		10 ^{meas} -0 ^{fit} 1/o ^{meas}	
Variable	Measurement	Fit	0 1	2 3	Variable	Measurement	Fit	0 1	2
$\Delta \alpha_{had}^{(5)}(\mathbf{m}_{z})$	0.02758 ± 0.00035	0.02774	-		$\Delta \alpha_{had}^{(5)}(\mathbf{m}_z)$	0.02758 ± 0.00035	0.02768	-	
m _z [GeV]	91.1875 ± 0.0021	91.1873			m _z [GeV]	91.1875 ± 0.0021	91.1875		
$\Gamma_{\rm Z}$ [GeV]	2.4952 ± 0.0023	2.4952			$\Gamma_{\rm Z}$ [GeV]	2.4952 ± 0.0023	2.4957		
σ_{had}^0 [nb]	41.540 ± 0.037	41.486			σ_{had}^0 [nb]	41.540 ± 0.037	41.477		
R ₁	20.767 ± 0.025	20.744			R	$\textbf{20.767} \pm \textbf{0.025}$	20.744		
$A_{0}^{0,1}$	0.01714 ± 0.00095	0.01641			A ^{0,1}	0.01714 ± 0.00095	0.01645		
$\mathbf{A}_{\mathbf{I}}(\mathbf{P}_{\tau})$	0.1465 ± 0.0032	0.1479			$A_{l}(P_{\tau})$	0.1465 ± 0.0032	0.1481		
R _b	0.21629 ± 0.00066	0.21613	-		R _b	0.21629 ± 0.00066	0.21586		
R _c	0.1721 ± 0.0030	0.1722			R _c	0.1721 ± 0.0030	0.1722		
A ^{0,b}	0.0992 ± 0.0016	0.1037			$A_{fb}^{0,b}$	0.0992 ± 0.0016	0.1038		
A ^{0,c}	0.0707 ± 0.0035	0.0741			A ^{0,c}	0.0707 ± 0.0035	0.0742		
A _b	0.923 ± 0.020	0.935			A _b	0.923 ± 0.020	0.935		
A_c	0.670 ± 0.027	0.668			A _c	$\textbf{0.670} \pm \textbf{0.027}$	0.668		
A _I (SLD)	0.1513 ± 0.0021	0.1479			A _l (SLD)	0.1513 ± 0.0021	0.1481		
$\sin^2 \theta_{eff}^{lept}(Q_{n})$	0.2324 ± 0.0012	0.2314			$\sin^2 \theta_{eff}^{lept}(\mathbf{Q}_{n})$	0.2324 ± 0.0012	0.2314		
m _w [GeV]	80.398 ± 0.025	80.382			m _w [GeV]	80.398 ± 0.025	80.374		
m _t [GeV]	170.9 ± 1.8	170.8			m _t [GeV]	170.9 ± 1.8	171.3		
R(b→sγ)	1.13 ± 0.12	1.12			Γ_{W} [GeV]	$\textbf{2.140} \pm \textbf{0.060}$	2.091		
$B_s \rightarrow \mu \mu \ [\times 10^{-8}]$	< 8.00	0.33	N/A (upper	limit)	L				
$\Delta a_{\mu} [\times 10^{-9}]$	2.95 ± 0.87	2.95							
$\Omega \mathbf{h}^2$	0.113 ± 0.009	0.113							
	O. Buchmüller	et al., PL	3 657/1-3 r	ap. 87-94			-	rXiv:hep-	ex/0612

$$\chi^2/\text{ndof} = 17.0/13 (20\% \text{ prob.})$$

$$\chi^2/{
m ndof} = 18.2/13 \ (15\% \ {
m prob.})$$

F.J. Ronga (ETHZ)

CMSSM