

Prospects for $B_d \rightarrow K^* \mu \mu$ at the LHC

Mitesh Patel (CERN) CKM 2008 Friday 12th September 2008

Introduction

- Flavour changing neutral current b→s decay that proceeds via loop diagram
- Decay described by three angles $(\theta_l, \phi, \theta_K)$ and di- μ invariant mass q²
- Sensitive to magnetic and vector and axial semi-leptonic penguin operators
- Try to use observables where uncertainty from B_d→K* transition form-factors cancel e.g. Forward-backward asymmetry A_{FB} of θ₁ distribution
- In general, angular distributions as function of q² gives sensitivity to NP contributions

Status

- BR measured at B-factories, in agreement with SM: BR(B_d→K*µµ)= (1.22^{+0.38}-0.32)×10⁻⁶ [1]
- BELLE has ~230 K*II events

- A_{FB}
 - Region with best theoretical control 1<q²<6GeV²
 - If C₇ flipped would expect to see in BR and dBR/dq²

BELLE preliminary, ICHEP 2008

Signal Selection

- Signal selection in LHC environment relies on finding B_d vertex, measuring momenta to determine masses
 - At LHCb:
 - B_d vertex resoln ~130 μ m
 - Track momenta ~0.5%
 - B_d mass ~16MeV (ATLAS: 50MeV)
- Muon-id performance important
- K/π separation from LHCb's RICH detectors also helps to suppress background
- Level 0 trigger μ p_T threshold ~1GeV

Signal Yields

- Latest generation of (full) Monte Carlo studies:
 - Total signal seln efficiency ~1.1%
 - ~7.2k signal events /2fb⁻¹ (full q² range)
 (~3.7k signal events /2fb⁻¹ (q²<m_{J/ψ}))
 - ~1.1k bkgrd events
 - \rightarrow in 2009 might expect ~1.8k signal events
- Have started to investigate multi-variant techniques to separate signal and bkgrd
- Fisher discriminant shown right relies on B_d Flight Distance, impact parameter, PID likelihoods

Background in LHCb

- Background:
 - Dominated by genuine μ from B decays
 - Don't observe any significant background from µ mis-id
 - $\begin{array}{ll} & & b {\rightarrow} \mu, \, b {\rightarrow} \mu \mbox{ dominant contribution,} \\ & \mbox{ symmetric distribution in } \theta_I \mbox{ scales } A_{FB} \\ & \mbox{ observed} \end{array}$
 - $\begin{array}{ll} & & b {\rightarrow} \mu, \, b {\rightarrow} c {\rightarrow} \mu \text{ significant contribution,} \\ & \text{asymmetric } \theta_I \text{ distribution} \text{ effect on } A_{FB} \\ & \text{depends on } \theta_I \text{ shape} \end{array}$
 - Non-resonant $K\pi\mu\mu$ events neglected
 - B/S ~0.2

Extracting A_{FB}

- Signal events have varying sensitivity according to θ₁
- However,
 - requiring that the µ be reconstructed imposes a minimum p requirement
 - trigger makes requirements on μp_T
- In both cases, the size of the effect is a function of q² – can extract acceptance function from e.g.
 B_d→K*J/Ψ, will need Monte Carlo to extrapolate to low q²
- → Will be important to understand acceptance correction

Extracting A_{FB} (cont'd)

Toy model shows effect of q^2 , θ_1 and θ_k acceptance functions:

LHCb A_{FB} Sensitivity

- LHCb
 - Will already have sensitivity with 0.1fb⁻¹
 - With 0.5fb⁻¹ will be able to start looking for a zero-point, s⁰
 - Simple linear fit suggests precision:

 More complex fit methods being evaluated ...

LHCb A_{FB} Sensitivity

- LHCb
 - Will already have sensitivity with 0.1fb⁻¹
 - With 0.5fb⁻¹ will be able to start looking for a zero-point, s⁰
 - Simple linear fit suggests precision:

 More complex fit methods being evaluated …

LHCb A_{FB} Sensitivity (cont'd)

 Unbinned fit of the q²-distribution using 3rd order Chebychev polynomials to parameterise forward and backward events

- Still have to add background and acceptance corrections
- Don't have to assume linear over zero-crossing point region, remove dependence on bin-size, fit range

Projection Fits

- Decays contain much more information than $\theta_{\text{I}},\,A_{\text{FB}}$ distributions
- Fitting projections of θ_{l} , ϕ , θ_{K} angular distributions:

$$\frac{d\Gamma'}{d\phi} = \frac{\Gamma'}{2\pi} \left(1 + \frac{1}{2} (1 - F_L) A_T^{(2)} \cos 2\phi + A_{Im} \sin 2\phi \right)$$
$$\frac{d\Gamma'}{d\theta_l} = \Gamma' \left(\frac{3}{4} F_L \sin^2 \theta_l + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_l) + A_{FB} \cos \theta_l \right) \sin \theta_l$$

$$\frac{d\Gamma'}{d\theta_K} = \frac{3\Gamma'}{4}\sin\theta_k \left(2F_L\cos^2\theta_K + (1-F_L)\sin^2\theta_K\right)$$

 \rightarrow fraction of longitudinal polarization, $F_L^{},$ and transverse asymmetry $A_T^{\,2}$

- Improves precision on A_{FB} by a factor ~2 cf. counting method
- Precision on A_T^2 relatively poor as suppressed by $(1-F_L)$ term

Full Angular Fit

• Full angular fit has also been investigated:

 $\frac{d^4\Gamma_{\overline{B}_d}}{dq^2\,d\theta_l\,d\theta_K\,d\phi} = \frac{9}{32\pi}I(q^2,\theta_l,\theta_K,\phi)\sin\theta_l\sin\theta_K$

 Parameterised in terms of transversity amplitudes

 $-A_0^{L,R}, A_{\perp}^{L,R}, A_{\parallel}^{L,R}, 6$ complex numbers

- Probe chiral structure of decay
- Sensitive to observables not accessible from projection fits
- Once have enough events in each q^2 bin for fit to converge \rightarrow better precision on A_{FB} , F_L , and A_T^2
- Then have all amplitudes can form any observable ...

Full Angular Fit (cont'd)

- Recent theoretical investigation has highlighted new observables A_T³, A_T⁴ with different NP sensitivity – See TH's talk at end of this session
- Full angular fit possible with >2fb⁻¹ data
- However, have to handle full acceptance correction
- Expect ~30% further improvement in precision on A_{FB} over projection method

Sensitivity of Central Detectors

- Table right from ATLAS, CMS studies on-going
- For $B_d \rightarrow K^* \mu \mu$ ATLAS expects:
 - ~0.8k signal events /10fb⁻¹ (full q² range)
 - <3.3k bkgrd events @90%CL
- Significant numbers of $B_s \rightarrow \phi \mu \mu$ and $\Lambda_B \rightarrow \Lambda \mu \mu$ events will also be recorded – will be able to compute A_{FB} in these channels
- LHCb also investigating all these decays

30 fb ⁻¹ (3 years)	# of signal Events	δA _{FB} for q ² <2.7 GeV ² (under J/Ψ)
$B ightarrow K^{0*} \mu \mu$	2500	4.8%
$B_s \rightarrow \phi \mu\mu$	900	6.0%
$B^{\scriptscriptstyle +} \rightarrow K^{\scriptscriptstyle +*} \mu \mu$	4000	5.2%
$B^+ \rightarrow K^+ \mu \mu$	2300	3.0%
$Λ_b \rightarrow Λ μμ$	800	6.0%

Conclusions

- Bright prospects for investigating NP with $B_d \rightarrow K^* \mu \mu$ at the LHC
- ATLAS expects ~0.2k signal events (2.5fb⁻¹) in 2009 [CMS studies on-going]
- LHCb expects ~ 1.8k signal events (0.5fb⁻¹) in 2009
 With ¹/₄ of a nominal year, will already have ~10× current B-factory statistics
- Background control significant issue, latest simulation studies still demonstrating good control B/S ~0.1-0.2
- Acceptance correction will also be important
- New methods fitting A_{FB} under investigation to reduce biases
- New methods fitting angular distributions offer improved sensitivity to A_{FB} , F_L and new observables with different NP sensitivity A_T^2 , A_T^3 , A_T^4
- Other analogous channels also under investigation