

SU(2) [K]ChPT and RBC-UKQCD Lattice Results

Jonathan Flynn

School of Physics & Astronomy University of Southampton

CKM2008 Rome 9 September 2008

RBC-UKQCD simulations

Chiral behaviour of masses and decay constants

K₁₃ decays

RBC-UKQCD lattice simulations

- We use domain wall fermions (DWF) for good chiral symmetry properties with Iwasaki gauge action
- Recent results from two 2 + 1 flavour datasets with lattice spacing around 0.114 fm

$24^3 \times 64 \times 16$	$L \approx 2.75 \text{fm}$
$16^3 \times 32 \times 16$	$L \approx 1.83 \text{fm}$

- On the 24³ lattice:
 - 4 values for light dynamical mass am₁ corresponding to pion masses 330, 415, 555 and 670 MeV
 - lightest $m_l \sim m_s/5$
 - $am_h = 0.04$ for sea strange quark: *a posteriori* a little too large
 - lightest valence quark mass about 11% of *m_s*, corresponds to pion mass 240 MeV (partial quenching)
- Currently generating and analysing $32^3 \times 64 \times 16$ with $a \approx 0.09$ fm

RBC-UKQCD lattice simulations (cont)

- Simulate with fixed bare input parameters g(a), am_l (isospin limit) and am_h
- ► Use three physical quantities (m_{π} , m_{K} and $m_{\Omega^{-}}$) to fix lattice spacing *a* and masses m_{ud} , m_s
- Simulate with m_l larger than m_{ud} and extrapolate to physical point
- Can work at m_s (after tuning)
- Chiral perturbation theory (ChPT) is used for the extrapolation $m_l \rightarrow m_{ud}$
 - How reliable?
 - What are the values of the Low Energy Constants (LECs)?
 - $SU(3)_L \times SU(3)_R$ or $SU(2)_L \times SU(2)_R$?
- We do partially quenched simulations with distinct valence and sea masses => use PQChPT Sharpe & Shoresh PRD62 094503 2000

SU(2) vs SU(3) ChPT

	SU(3)	SU(2)
degrees of freedom	π, \mathcal{K}, η	π
	K and η pGBs	K and η integrated out
expand in (with $\Lambda_\chi \sim 4\pi f_\pi$)	$\left(rac{\pmb{M}_{\pi,K,\eta}}{\pmb{\Lambda}_{\chi}} ight)^2$	$\left(\frac{M_{\pi}}{\Lambda_{\chi}}\right)^2, \left(\frac{M_{\pi}}{M_K}\right)^2$
LECs	$f(m_{c,b,t}, \Lambda_{\text{QCD}})$	$f(m_s, m_{c,b,t}, \Lambda_{\text{QCD}})$
NLO accuracy at phys masses	$\left(rac{M_\eta}{4\pi f_\pi} ight)^4\sim 5\%$	$\left(\frac{M_{\pi}}{M_{K}}\right)^{4} < 1\%$

cf. Lellouch Lattice2008

$SU(3)_L \times SU(3)_R \; ChPT$

- ► EFT of approximate chiral symmetry of QCD; expansion in powers of $M_{\pi,K,\eta}^2/\Lambda_{\chi}^2$ up to chiral logarithms
- Examples at one-loop:

$$m_{\pi}^{2} = \chi_{ud} \left\{ 1 + \frac{48}{f_{0}^{2}} (2L_{6} - L_{4})\bar{\chi} + \frac{16}{f_{0}^{2}} (2L_{8} - L_{5})\chi_{ud} \right. \\ \left. + \frac{1}{24\pi^{2}f_{0}^{2}} \left(\frac{3}{2}\chi_{ud} \log \frac{\chi_{ud}}{\Lambda_{\chi}^{2}} - \frac{1}{2}\chi_{\eta} \log \frac{\chi_{\eta}}{\Lambda_{\chi}^{2}} \right) \right\} \\ f_{\pi} = f_{0} \left\{ 1 + \frac{24}{f_{0}^{2}}L_{4}\bar{\chi} + \frac{8}{f_{0}^{2}}L_{5}\chi_{ud} \right. \\ \left. - \frac{1}{16\pi^{2}f_{0}^{2}} \left(2\chi_{ud} \log \frac{\chi_{ud}}{\Lambda_{\chi}^{2}} + \frac{\chi_{ud} + \chi_{s}}{2} \log \frac{\chi_{ud} + \chi_{s}}{2\Lambda_{\chi}^{2}} \right) \right\}$$

where $\chi_i = 2B_0 m_i$ for i = ud, s, $\chi_\eta = (\chi_{ud} + 2\chi_s)/3$ and $\bar{\chi} = (2\chi_{ud} + \chi_s)/3$

Do such formulae represent our data?

 $SU(2)_L \times SU(2)_R \; ChPT$

One-loop examples:

$$m_{\pi}^{2} = \chi_{ud} \left\{ 1 + \frac{\chi_{ud}}{16\pi^{2}f^{2}} \left(64\pi^{2}I_{3}^{r} + \log\frac{\chi_{ud}}{\Lambda_{\chi}^{2}} \right) \right\}$$
$$\equiv \chi_{ud} \left(1 - \frac{\chi_{ud}}{16\pi^{2}f^{2}}\overline{I}_{3} \right)$$
$$f_{\pi} = f \left\{ 1 + \frac{m_{\pi}^{2}}{8\pi^{2}f^{2}} \left(16\pi^{2}I_{4}^{r} - \log\frac{m_{\pi}^{2}}{\Lambda_{\chi}^{2}} \right) \right\} \equiv f \left(1 + \frac{m_{\pi}^{2}}{8\pi^{2}f}\overline{I}_{4} \right)$$

now with $\chi_{ud} = 2Bm_{ud}$

- New set of *m_s*-dependent LECs
- Can "convert" from SU(3) to SU(2) for small M_{π}^2/M_K^2 . Example:

$$l_4^r = 8L_4 + 4L_5 - \frac{1}{64\pi^2} \Big(1 + \log \frac{\chi_s}{2\Lambda_\chi^2}\Big)$$

Do such formulae represent our data?

NLO SU(3)_L × SU(3)_R fit bad for $am_{avg} < 0.03$

Left: f_P Right: m_P^2

NLO SU(3)_L × SU(3)_R fit good for $am_{avg} < 0.01$

Left: f_P Right: m_P^2

Chiral fits

- NLO SU3 chiral fits to pseudoscalar masses and decay constants work well but only at light masses, below about 400 MeV
 - NLO corrections are very large, up to 50% of LO term for decay constants
 - Fitted decay constant in chiral limit, f₀, very small
- going to NNLO would increase range of good fits
 - number of new LECs too large for the data we have
 - others use at least the analytical terms
 - work in progress (Mawhinney Lattice2008)
- Fits can also be done using $SU(2)_L \times SU(2)_R$ ChPT at light masses
 - NLO corrections smaller
 - Inclusion of analytic NNLO terms extends range of fit with small NNLO contributions

Results using SU(2) and SU(3) ChPT

SU(3) curve is for three degenerate quarks so does not show f_{π}

 $f_{\pi}/f = 1.08$ $f/f_0 = 1.23(6)$

Large value of f_{π}/f_0 leads us to present results based on SU(2)_L × SU(2)_R ChPT

 $f_{\pi} = 124.1~(3.6)_{stat}(6.9)_{sys}~{
m MeV}$

Kaon $SU(2)_L \times SU(2)_R$ ChPT

- Only u and d transform \implies include kaon as a matter field
- KChPT introduced by Roessl to study Kπ scattering near threshold NPB555 507 1999
- ► Parallels to Heavy Meson ChPT, but $m_{K^*} \neq m_K$, whereas $m_{B^*} = m_B$ in heavy quark limit
- ▶ We derived the chiral behaviour of m_K^2 , f_K and B_K in unitary and partially quenched theories and used the results in our phenomenological studies RBC-UKQCD arXiv:0804.0473 and 0809.1229
- m_s taken as $O(\Lambda_{QCD})$ so expand in m_π^2/m_K^2 as well as m_π^2/Λ_χ^2
- m_K^2/Λ_{χ}^2 effects are fully absorbed into the LECs
- ► Kaon decay constant in SU(2) chiral limit, $f^{(K)}$, distinct from pion decay constant in same limit, f

Chiral behaviour of m_K^2 and f_K

- Use PQ SU(2)_L × SU(2)_R KChPT with light valence quark am_{ud} < 0.01 and am_s = 0.04
- Result arXiv:0804.0473

$$f_K/f_\pi = 1.205 \, (0.018)_{\rm stat} (0.062)_{\rm sys}$$

Decay constants and LECS from SU(2) fits

$$f = 114.8 (4.1)_{stat} (8.1)_{sys} \text{ MeV}$$

$$\bar{l}_3 = 3.13 (0.33)_{stat} (0.24)_{sys}$$

$$\bar{l}_4 = 4.43 (0.14)_{stat} (0.77)_{sys}$$

$$f_{\pi} = 124.1 (3.6)_{stat} (6.9)_{sys} \text{ MeV}$$

$$f_{K} = 149.6 (3.6)_{stat} (6.3)_{sys} \text{ MeV}$$

$$f_{K}/f_{\pi} = 1.205 (0.018)_{stat} (0.062)_{sys}$$

RBC-UKQCD arXiv:0804.0473

K₁₃ decay

$$\langle \pi^+(k) | \bar{u} \gamma_\mu s | \bar{K}^0(p) \rangle$$

= $f_+(q^2) \Big(p_\mu + k_\mu - \frac{m_K^2 - m_\pi^2}{q^2} q_\mu \Big) + f_0(q^2) \frac{m_K^2 - m_\pi^2}{q^2} q_\mu$

• Require $f_0(0) = f_+(0)$ to better than 1% precision

• ChPT \Longrightarrow

$$f_{+}(0) = 1 + f_{2} + f_{4} + \cdots$$
 where $f_{n} = O(M_{\pi,K,\eta}^{n})$

► Reference value is f₊(0) = 0.961(8) where f₂ = -0.023 relatively well known from ChPT and f₄, f₆,... are found from models Leutwyler & Roos 1984

K₁₃ "standard method"

- ▶ 1% precision attainable because $1 f_+(0)$ is calculated Becirevic et al NPB705 339 2005 based on Okamoto et al PRD61 014502 2000
- Evaluate $f_0(q_{\text{max}}^2)$ with excellent precision for varying m_l using a double ratio

$$\frac{\langle \pi | \bar{s} \gamma_4 u | K \rangle \langle K | \bar{u} \gamma_4 | \pi \rangle}{\langle \pi | \bar{u} \gamma_4 u | \pi \rangle \langle K | \bar{s} \gamma_4 s | K \rangle} = [f_0(q_{\max}^2)]^2 \frac{(m_K + m_\pi)^2}{4m_K m_\pi}$$

- Evaluate somewhat less precisely at other values of q^2 for varying m_l
- Extrapolate in q^2 and do chiral extrapolation $m_l \rightarrow m_{ud}$

K_{I3} : q^2 and chiral extrapolations

- Central values from combined pole fit to *q*² and *m_l* → *m_{ud}* dependence
- *f*₀(0) as function of pion mass

Final answer Boyle et al PRL100 141601 2008

 $f_+(0) = 0.964(5)$

K_{I3} : chiral extrapolation at q_{max}^2

 The Callan-Treiman relation becomes in the SU(2) chiral limit (for our simulated m_s)

$$f_0(q_{\max}^2) \xrightarrow{m_\pi^2 \to 0} \frac{f^{(\kappa)}}{f} \approx 1.28$$

• Lattice results at the simulated masses are about 25% below $f^{(K)}/f$ and are increasing very slowly

$m_{\pi}/{ m MeV}$	$q_{\rm max}^2/{ m GeV}^2$	$f_0(q_{\rm max}^2)$
671(11)	0.00235(4)	1.00029(6)
556(9)	0.01252(20)	1.00192(34)
416(7)	0.03524(62)	1.00887(89)
329(5)	0.06070(107)	1.02143(132)

Chiral behaviour in KChPT

$$f_0(q_{\max}^2) = \frac{f^{(\kappa)}}{f} \Big[1 - \frac{11}{4}L + \frac{\lambda_1}{4\pi f} m_{\pi} + \frac{\lambda_2}{(4\pi f)^2} m_{\pi}^2 + \cdots \Big]$$

where

$$L=\frac{m_\pi^2}{(4\pi f)^2}\log\frac{m_\pi^2}{\mu^2}$$

- Linear dependence on m_{π}
- Log term large but wrong sign
- Estimate linear term by converting from SU(3) (Gasser & Leutwyler 1985): also large and changes overall sign
- ... stability of chiral expansion questionable
- SU(3) description, fixing L_5 from f_K/f_{π} , provides semi-quantitative agreement
- Similar issues for $f_0^{B\to\pi}(q_{\max}^2)$ vs f_B/f_{π}

Eliminating the q^2 interpolation

Momentum resolution with conventional methods is poor on the lattice:

L = 24a with $a^{-1} = 1.73 \,\text{GeV} \Rightarrow 2\pi/L = 0.45 \,\text{GeV}$

 Modify momentum spectrum (relative to periodic BCs) using twisted BCs

$$q(x_i + L) = e^{i\theta_i}q(x_i) \longrightarrow p_i = \frac{2\pi}{L}n_i + \frac{\theta_i}{L}$$

- FV corrections remain exponentially small with twisted BCs for quantities without FSI (eg masses, decay constants, form factors) Sachrajda & Villadoro 2004
- FV corrections also exponentially small for partial twisting: periodic BCs for sea quarks, twisted for valence Sachrajda & Villadoro 2004, Bedaque & Chen 2004
- No need to generate new ensembles for every choice of twists

 K_{I3} directly at $q^2 = 0$

► Tune twists to calculate matrix element at $q^2 = 0$ (or any chosen value of q^2) Boyle et al JHEP 0705:016 2007

$$\langle \pi(\vec{0}) | V_4 | K(\vec{\theta}_K) \rangle$$
 with $|\vec{\theta}_K| = L \sqrt{\left(\frac{m_K^2 + m_\pi^2}{2m_\pi}\right)^2 - m_K^2}$
 $\langle \pi(\vec{\theta}_\pi) | V_4 | K(\vec{0}) \rangle$ with $|\vec{\theta}_\pi| = L \sqrt{\left(\frac{m_K^2 + m_\pi^2}{2m_\pi}\right)^2 - m_\pi^2}$

• Twisted BC previously applied to K_{I3} (though not directly at $q^2 = 0$) in a quenched simulation Guadagnoli et al PRD73 114504 2006

 K_{I3} directly at $q^2 = 0$

- Feasibility demonstrated on a 16³ × 32 lattice at two values of m_{ud} Boyle et al JHEP 0705:016 2007
- Currently using partial twisting to get $f_0(0)$ at our lightest quark mass (am = 0.005) on $24^3 \times 64$ lattice
- Preliminary results suggest we can get the same accuracy with this direct method as with the "traditional" one
- We have also used partial twisting to study the electromagnetic form factor of a pion with mass 330 MeV at small momentum transfers, using NLO ChPT to determine results for a physical pion

Conclusions/Outlook

- Presented selected phenomenological results in kaon physics from 2 + 1 flavour dynamical lattice simulations using action with good chiral properties
- Lattice community beginning to make strong contact with ChPT community and to determine LECs with precision
- RBC-UKQCD now moving on to finer lattices (will gain information on continuum extrapolation)
- ► Will continue to extend range of quantities calculated (eg $K \rightarrow \pi \pi$ decays)
- Medium term aim is target simulation with a = 0.06 fm, L = 4 fm, $m_{\pi} = 195$ MeV