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bq SP ×qd S−P  Q10=
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∑
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eq b q V−A × q d V−A 

The relevant Weak Hamiltonian

“Current” Operator “Penguin”   and     “EW Penguin”   Operator
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A Bππ  ∝ 〈B∣HΔC=0,Δ S=0
ΔB=1 ∣ππ 〉



The Wick Contractions
Example of topologies:



The Wick Contractions

P ∝ C1 〈Q1
c
〉CPC2 〈Q2

c
〉DP∑

i=2

5

C2i 〈Q2i〉DE∑
i=3

10

C i 〈Qi〉CP

Example of topologies:



C

+ -,00=
∣A+ -,00∣2−∣A+ -,00∣2

∣A+ -,00∣2∣A+ -,00∣2
, S

+ -=
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B
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          2
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
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B0
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       2

A+ -
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+


-
=e−iT + -

P

A00
=A B0
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0


0
=

1
2

e−iT00
−P 

A+0
=A B+


+


0
=

1
2

e−i
T 00

T + -


Assuming exact SU(2) symmetry and neglecting EWP,the amplitude can be written as:

In terms of this amplitude, the observables are
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Assuming exact SU(2) symmetry and neglecting EWP,the amplitude can be written as:

∣T−∣ , ∣T 00∣ , ∣P∣ , φ00 , φP , α

6 parameters

In terms of this amplitude, the observables are

Bππ
− , Bππ

00 , Bππ
0 , Cππ

− , Cππ
00 , Sππ

−

6 experimental quantities

α can be determined without assumptions on the value of the QCD parameters
(Gronau-London ’90)



In the Bayesian inference the inputs are the experimental likelihoods and the priors for
all the parameters.
The result of the inference is a p.d.f for the parameters
(eventually integrated on some of them). For example the p.d.f for α is

P α ∝∫∏
i=1

6

LE i ,∣T
−∣,, α P0∣T

−∣P0α d∣T
−∣

Log LB− ,∣T−
∣, , α =

−Bex
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2σ
B−

2

⋯

⋯



In the Bayesian inference the inputs are the experimental likelihoods and the priors for
all the parameters.
The result of the inference is a p.d.f for the parameters
(eventually integrated on some of them). For example the p.d.f for α is

Possible issue:
Given one sextuple of exp.values, there are 8 (or 0) possible sextuple of parameters
Some exp. value have a quite large error (C00)
Same number of experimental and fit parameters

P α ∝∫∏
i=1

6

LE i ,∣T
−∣,, α P0∣T

−∣P0α d∣T
−∣

Log LB− ,∣T−
∣, , α =

−Bex
−−

∣A−∣2∣A−∣2

2
2

2σ
B−

2

⋯



In the Bayesian inference the inputs are the experimental likelihoods and the priors for
all the parameters.
The result of the inference is a p.d.f for the parameters
(eventually integrated on some of them). For example the p.d.f for α is

Possible issue:
Given one sextuple of exp.values, there are 8 (or 0) possible sextuple of parameters
Some exp. value have a quite large error (C00)
Same number of experimental and fit parameters

The experimental information is not guaranteed to dominate the information contained
in the priors. One must explicitly check if and how the resulting p.d.f. depends on
the choice of the priors.
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The parameters |T+-|,|T00,|P| are not arbirtrary mathematical variable which can take
any values between  0 and infinity, but they have a natural scale.
   
Not considering this point is the main reason of the difference of our analysis with
that presented in J.Charles et al. hep-ph/0607246.

For example a value of  α≈ 0 is possible only for infinitely large |T+-|,|T00|,|P|

∣T−∣≈1.3÷3.2

∣P∣2=BR BsKK− ×106
τ
Bd

0

τ
B
s
0

∣V td∣
2

∣V ts∣
2

≃ 1.12

Hints to set the scale of the hadronic parameter:

1) Rough estimates using factorized amplitued of current operators, or using
    the Heavy quark effective theory to scale from D→ππ to B→ππ gives

2) Assuming SU(3) symmetry one can estimate P:

What information we have on the hadronic parameters ?



Priors:

MA |T+-| and |T00| flat in the range [0,10], |P| flat in the range [0,2.5],
ϕ

00 
and ϕ

P 
flat in the range [0,360°], α flat in the range [0,180°]

RI
Re T+-,Re T00,Im T00,Re P,Im P flat with the condition
|T+-|,|T00|<10 and |P|<2.5, α flat in the range [0,180°]

ES
(Explicit solution) Flat distribution in the combination of parameters which
appear in the gaussian Likelihood.
This is the Jeffreys Prior, with added the condition that
|T+-|,|T00|<10 and |P|<2.5

ES
No cut

This is the pure Jeffreys Prior, without any other condition.
In this case no upper bound is set on the hadronic parameter.
This is just an explorative case to see the relevance of the upper bounds
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This is the pure Jeffreys Prior, without any other condition.
In this case no upper bound is set on the hadronic parameter.
This is just an explorative case to see the relevance of the upper bounds

We observe that once the upper limits on |P| is set, the upper limits on |T| are
completely irrelevant because they are automatically induced by the experimental BR



Experimental inputs (HFAG)

All B are in 106 units

Bππ
+-

5.2±0.2
Bππ

00

1.31±0.21
Bππ

+0

5.6±0.4
Cππ

+-

-0.38±0.7
Sππ

+-

-0.61±0.8
Cππ

00

-0.49±0.31

B

+-

23.1±3.3
B

00

1.16±0.46
B

+0

18.2±3.0
C

+-

-0.06±0.13
S

+-

-0.05±0.17
C

00

-0.39±0.93



(Efficient) Montecarlo Evaluation of the p.d.f.

1) Generate the 6 observables with the experimental likelihood

2) Solve for the sextuple of paramerts (event). You get 8 or 0 event.
   
3) Weight each event with the appropriate Jacobian in order to implement the
    choosen prior. For example, in the “ES No cut” case,  simply J=1

4) Sum over the 8 event and go to step 1.

c=
r Bππ

0Bππ
− 1Cππ

− /2−Bππ00 1Cππ
00

2r Bππ
− Bππ

0 1Cππ
−

, c=
r Bππ

0Bππ
− 1−Cππ

−  /2−Bππ
00 1−Cππ

00 

2r Bππ
− Bππ

0 1−Cππ
− 

, s=±1−c2 , s=±1−c2 , r=
τ
B

τ
B0

sin2αeff =
Sππ
−

1−Cππ
−

2
, cos2αeff =±1−sin2

2αeff  , tan α =
sin2αeff  ccos 2αeff  ss

cos2αeff  c−sin 2αeff  sc

∣T−∣=[Bππ
−

2sin2
α 

1±1−Cππ
−

2
−Sππ

−
2 ]

1
2

, ∣P∣=[∣T−∣2 2cos2 α −1Bππ
− 1−Sππ

−

tanα  ]
1
2

∣T 00∣=[∣P∣2cos 2α2Bππ
00±2cos2α ∣P∣4∣P∣2cos2 α 

2Bππ
00−∣P∣2−4

Bππ
002

Cππ
002

sin22α ]
1
2

, x p=−
∣P∣2∣T−∣2−Bππ
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cos α 
, yp=−

Bππ
− Cππ

−

sinα 

x00=
∣P∣2∣T00∣2−Bππ

00

cosα 
, y00=−

Bππ
00 Cππ

00

sinα 
, φP=Arg PT− =arctan  xp , yp  , φ00=Arg T

00

T− =arctan x00 , y00



RI MA

ES

B→ππ : results for α

1) In all cases the two regions
     0≲α≲75 and 170≲α≲180
     are excluded.

2) The shape in the allowed         
     region is not significant and
     depends on the prior



RI MA

ES ES No Cut

B→ππ : results for α

1) In all cases the two regions
     0≲α≲75 and 170≲α≲180
     are excluded.

2) The shape in the allowed         
     region is not significant and
     depends on the prior

3) The upper bound on the
     hadronic parameters play
     an important role in                
     excluding α≈0



Is this prior dependence an unavoidable feature of Bayesian approach ?

Try simply to reduce a factor 4 the error on C00 (so that the error is at the
same level as the other asymmetries) 

MARI

ES ES No cut

Increasing the experimental
information decrease the
dependence on the prior
of the shapes.



Try removing experimental 
information on C00 :

Given the present uncertainty, the
measure of C00 does not play any role

ES (no C00) ES

Try removing experimental 
information on B00 :

Without the cut on the hadronic parameter,
we don't have any information on α

ES ES No Cut

Try removing experimental 
information on S+- :

The Result change completely, the cut on
the hadronic parameter is less effective.

ES ES No Cut



Results for the Hadronic Parameters
                       (RI Prior)

P T00 T+-

ϕ
P

ϕ
00 1) Upper bound on T+- and T00

       in the prior is completely
    irrelevant

2) Data prefer a value of
    P≈1.3 a value 20% higher
    than SU(3) predictions.



Releasing SU(2) Assumption

We have not performed yet a detailed inference releasing this assumption.

There are 3 possible source of SU(2) violation:

1) EWP contribution.                                                          _
    The relation A+0=A+-/√2+A00 still hold, but now |A+0|≠| A+0|.
    Estimating the impact of EWP (neglecting Q

7,8 
 and using SU(3),Neubert & Rosner '98)

    gives:  δα≃1°-2°

2) Mixing π0-η-η'
        π0 = |π

3
> + ε |η> + ε' |η'>  ;  ε=0.017±0.003  ;  ε'=0.004±0.001

        Using experimental upper bound on the amplitudes and varing the phases one gets
                      δα≲1.6°  (J. Zupan CKM 2006)

3) SU(2) violation in the low-energy matrix-elements.
    Topologies which differ for the exchange u⇔d can give contributions whose
    difference is (m

u
-m

d
)/Λ

QCD
≃1% giving a similar impact on α.

The error due to SU(2) violation is few degrees



B→ρρ 

MARI

ES ES No Cut

Three regions selected.
The relative heights is not
significant because depend
strongly on the prior.

α≃0 and α≃180 are not
excluded because there is not
a clear experimental signal of
CP violation.



B→ρπ 

This is a completely different analysis: 
The time-dependent Dalitz plot analysis of the decays of the neutral B
allows one to infer the value of α without any dependence on the hadronic parameter.

In fact if you consider the amplitude combination (assuming SU(2) exact symmetry)
                    A = A(B0 →ρ+ π-) + A(B0 →ρ- π+) +2 A(B0 →ρ0 π0)
you can see that in the ratio
                    

the hadronic parameters cancel out.

R=
A
A
=e2 i



All Combined Together

Two region selected.

A  clear mesurement of the
asymmetry in B→ρρ should
reduce the region around 160°.



Conclusions

1) The Gronau London analysys applied to the current exp. data for B→ππ,
     clearly select the region  75≲α≲170.
     Inside this region there are not preferred values.
     Reducing the error on C00 strongly improve the inference.

2)  The same analysys applied to B→ρρ exclude the two region
     25≲α≲60 and 125≲α≲150
     In this channel there is a stronger dependence on the prior because
     the experimental asymmetries have larger errors.

3)  Neglecting Isospin Breaking and EWP operators introduce an error
     of 2∼4 degrees on α. Not important in this moment, but deserving
     more investigation with improved experimenatal data.


