RADIATIVE CORRECTIONS TO $K_{\ell 2}$ AND $K_{\ell 3}$ DECAYS

Helmut Neufeld

Univ. Wien

CKM 2008

5th Workshop on the Unitarity Triangle

Roma, Sept. 9 - 13, 2008

Electromagnetic contributions in semileptonic weak decays

Low-energy effective field theory: Chiral perturbation theory with virtual photons and leptons

dynamical degrees of freedom:

• pseudoscalar octet $(\pi^{\pm}, \pi^0, K^{\pm}, K^0, \overline{K^0}, \eta)$

• photon (γ)

• light leptons
$$(e^{\pm}, \nu_e, \mu^{\pm}, \nu_{\mu})$$

Effective Lagrangian

$\mathrm{LO}\left(L=0\right)$

 \mathcal{L}_{p^2} F, B, e, G_F $\mathcal{L}_{e^2p^0}$ Z $\rightarrow \pi^+\pi^0$ mass difference NLO ($L \leq 1$) \mathcal{L}_{p^4} $L_1, L_2, \ldots L_{12}$ $\mathcal{L}_{e^2p^2}$ $K_1, K_2, \ldots K_{14}$ Urech 1995

 $\mathcal{L}_{ ext{lept}}, \mathcal{L}_{\gamma}$ $X_1, X_2, \ldots X_8$ Knecht, Neufeld, Rupertsberger, Talavera 2000

NNLO $(L \leq 2)$

 $\mathcal{L}_{p^6} \ \mathcal{L}_{e^2p^4}$

Short distance enhancement

universal factor

$$1 - rac{e^2}{2}(X_6^r - 4K_{12}^r) \equiv 1 - rac{e^2}{2}X_6^{
m phys}$$

appears in front of all semileptonic amplitudes (process independent)

 $X_6^{
m phys}$ contains the large short-distance contribution

$$e^2 X_6^{
m phys}(M_
ho) = S_{
m EW} - 1 + e^2 ilde{X}_6^{
m phys}(M_
ho)$$

$$S_{
m EW} ~=~ 1 + rac{2lpha}{\pi} \log rac{M_Z}{M_
ho} + \ldots = 1.0223 \pm 0.0005 ~~ {
m Sirlin\, 1978; 1982}$$

H. Neufeld

Determination of electromagnetic low-energy constants (LECs)

general approach:

isolate Green functions sensitive to specific LECs , then match to QCD

observations:

- LECs sensitive to "heavy" degrees of freedom
- $N_C \rightarrow \infty$: Green functions determined by exchange of (stable) particles
- few-resonance approximation usually sufficient

$\mathcal{L}_{e^2p^2}$ K_i Ananthanarayan, Moussallam 2004

 \mathcal{L}_{lept} X_i Descotes-Genon, Moussallam 2005

example:

determination of $X_1 \rightarrow \text{two-step matching procedure}$

SM → Fermi theory → CHPT Descotes-Genon, Moussallam 2005

representation for X_1

$$X_1 = rac{3i}{8} \int rac{d^4k}{(2\pi)^4} \left(\Gamma_{VV}(k^2) - \Gamma_{AA}(k^2)
ight) /k^2$$
 $\Gamma_{VV}(k^2) \sim \lim_{p o 0} \int d^4x e^{ikx} \langle 0 | V^a_\mu(x) V^b_
u(0) | \phi^c(p)
angle, \quad V o A : \Gamma_{AA}(k^2)$

integral converges well \rightarrow saturate with lowest-lying *V*, *A* meson resonances final result: $X_1 = -0.0037$

$$P_{\ell 2(\gamma)} \quad (P=\pi,K)$$

$$\begin{split} \Gamma_{P_{\ell 2(\gamma)}} &= \ \Gamma_{P_{\ell 2}}^{(0)} \times S_{\rm EW} \times \left\{ 1 + \frac{\alpha}{\pi} \, F(m_{\ell}^2/M_P^2) \right\} \\ &\times \ \left\{ 1 - \frac{\alpha}{\pi} \Biggl[\frac{3}{2} \log \frac{M_{\rho}}{M_P} + c_1^{(P)} \\ &+ \frac{m_{\ell}^2}{M_{\rho}^2} \left(c_2^{(P)} \, \log \frac{M_{\rho}^2}{m_{\ell}^2} + c_3^{(P)} + c_4^{(P)}(m_{\ell}/M_P) \right) \\ &- \frac{M_P^2}{M_{\rho}^2} \, \tilde{c}_2^{(P)} \, \log \frac{M_{\rho}^2}{m_{\ell}^2} \Biggr] \right\} \end{split}$$

$$\Gamma^{(0)}_{P_{\ell 2}} = rac{G_F^2 |V_P|^2 F_P^2}{4\pi} M_P m_\ell^2 \left(1 - rac{m_\ell^2}{M_P^2}
ight)^2, \qquad V_\pi = V_{ud}, \quad V_K = V_{us}$$

 $c_1^{(P)}$ at $\mathcal{O}(e^2p^2)$ Knecht, Neufeld, Rupertsberger, Talavera 2000

$$c_1^{(\pi)} = -4\pi^2 E^r(M_
ho) - rac{1}{2} + rac{Z}{4} \Big(3 + 2\log rac{M_\pi^2}{M_
ho^2} + \log rac{M_K^2}{M_
ho^2} \Big)$$

$$c_1^{(K)} = -4\pi^2 E^r(M_
ho) - rac{1}{2} + rac{Z}{4} \Big(3 + 2\log rac{M_K^2}{M_
ho^2} + \log rac{M_\pi^2}{M_
ho^2} \Big)$$

$$E^r = rac{8}{3}K_1^r + rac{8}{3}K_2^r + rac{20}{9}K_5^r + rac{20}{9}K_6^r - rac{4}{3}X_1^r - 4X_2^r + 4X_3^r - ilde{X}_6^{
m phys}$$

$$\Rightarrow c_1^{(K)} - c_1^{(\pi)} = rac{Z}{4} \log rac{M_K^2}{M_\pi^2}$$
 independent of E^r

$$\Gamma_{K\ell 2(\gamma)}/\Gamma_{\pi\ell 2(\gamma)}$$
 (exp.), F_K/F_{π} (lattice) $\longrightarrow V_{us}/V_{ud}$ Marciano 2004

 $ext{BR}_{K_{\mu 2(\gamma)}}, au_{K^{\pm}} ext{ FLAVIAnet Kaon Working Group 2008}$

$$\begin{split} &\Gamma_{\pi_{\mu^2(\gamma)}} \quad \text{PDG 2008} \\ &\longrightarrow \quad \frac{V_{us}}{V_{ud}} \times \frac{F_K}{F_\pi} = 0.2760 \pm 0.0003_{\text{exp}} \pm 0.0002_{\text{EM}} \\ &F_K/F_\pi = 1.189 \pm 0.007 \quad \text{Follana et al. (HPQCD and UKQCD) 2008} \\ &\longrightarrow \quad V_{us}/V_{ud} = 0.2321 \pm 0.0014_{\text{lattice}} \pm 0.0002_{\text{exp}} \pm 0.0001_{\text{EM}} \\ &F_K/F_\pi = 1.205 \pm 0.065 \quad \text{Allton et al. (RBC and UKQCD) 2008} \\ &\longrightarrow \quad V_{us}/V_{ud} = 0.2290 \pm 0.0124_{\text{lattice}} \pm 0.0002_{\text{exp}} \pm 0.0001_{\text{EM}} \end{split}$$

$$R^{(P)}_{e/\mu}=\Gamma_{P_{e2(\gamma)}}/\Gamma_{P_{\mu2(\gamma)}}~~(P=\pi,K)$$

V - A structure of charged currents $\longrightarrow R_{e/\mu}^{(P)}$ helicity suppressed \longrightarrow sensitive probe for new physics

(pseudoscalar currents, violation of lepton universality, ...)

- ***** first systematic calculation to $\mathcal{O}(e^2p^4)$
- ***** only diagrams with photon connected to lepton line contribute to ratio
- ***** relevant counterterm determined by matching with large- N_c QCD
- ***** inclusion of real photon corrections
- ***** summation of leading logs $\alpha^n \log^n(m_\mu/m_e)$ (Marciano, Sirlin 1993)

Cirigliano, Rosell 2007

dashed lines: pseudoscalars, wavy lines: photons, shaded squares: vertices from \mathcal{L}_{p^4}

	Cirigliano, Rosell	Marciano, Sirlin	Finkemeier
$R_{e/\mu}^{(\pi)}\cdot 10^4$	1.2352 ± 0.0001	1.2352 ± 0.0005	1.2354 ± 0.0002
$R^{(K)}_{e/\mu}\cdot 10^5$	$\boldsymbol{2.477 \pm 0.001}$		2.472 ± 0.001

experiment:

$$egin{aligned} R_{e/\mu}^{(\pi)} \cdot 10^4 &= 1.230 \pm 0.004 & ext{PDG 2008} \ R_{e/\mu}^{(K)} \cdot 10^5 &= 2.457 \pm 0.032 & ext{FLAVIAnet Kaon Working Group 2008} \end{aligned}$$

 $rightarrow R_{e/\mu}^{(\pi)}$ confirmed with better precision

lpha discrepancy with previous calculation of $R^{(K)}_{e/\mu}$

main reason: form factors of **Finkemeier** incompatible with asymptotic behaviour of QCD

H. Neufeld

$K_{\ell 3}$ decays

$$\Gamma_{K_{\ell 3(\gamma)}} = \frac{C_K^2 G_F^2 M_K^5}{128\pi^3} |V_{us} f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)}(\lambda_i) S_{\rm EW} \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi}\right)$$

$$C_K = \left\{ egin{array}{cc} 1 & ext{for} \ K_{e3}^0 \ rac{1}{\sqrt{2}} & ext{for} \ K_{e3}^+ \end{array}
ight.$$

$$\delta^{K\ell}_{
m EM} = \delta^{K\ell}_{
m EM}(\mathcal{D}_3) + \delta^{K\ell}_{
m EM}(\mathcal{D}_{4-3}), \qquad \delta^{K\pi}_{
m SU(2)} = \Big(rac{f_+^{K\pi}(0)}{f_+^{K^0\pi^-}(0)}\Big)^2 - 1$$

CKM 2008

H. Neufeld

electromagnetic corrections for $K_{\ell 3}$ decay rates to $\mathcal{O}(e^2p^2)$

older analysis Ginsberg 1967-1970

general formulae within effective quantum field theory Cirigliano, Knecht, Neufeld, Rupertsberger, Talavera 2002

numerics of EM corrections for K_{e3} Cirigliano, Neufeld, Pichl 2004

numerics of EM corrections for K_{e3} (update) and $K_{\mu3}$ (new) Cirigliano, Giannotti, Neufeld 2008

- ***** analysis at fixed chiral order $\mathcal{O}(e^2p^2)$
- *** fully** inclusive prescription of real photon emission
- ***** update of structure-dependent EM contributions (K_i^r, X_i^r) from Ananthanarayan, Moussallam 2004; Descotes-Genon, Moussallam 2005)

	$I_{K\ell}^{(0)}(\lambda_i)$	$\delta^{K\ell}_{ m EM}(\mathcal{D}_3)(\%)$	$\delta^{K\ell}_{ m EM}(\mathcal{D}_{4-3})(\%)$	$\delta^{K\ell}_{ m EM}(\%)$
K^0_{e3}	0.103070	0.50	0.49	0.99 ± 0.22
K_{e3}^\pm	0.105972	-0.35	0.45	0.10 ± 0.25
$K^0_{\mu 3}$	0.068467	1.38	0.02	1.40 ± 0.22
$K^\pm_{\mu 3}$	0.070324	0.007	0.009	$\textbf{0.016} \pm \textbf{0.25}$

errors: estimates of higher-order contributions

H. Neufeld

14

EM correction to differential distribution of K^0_{e3} $(y=2E_\ell/M_K,\ z=2E_\pi/M_K)$

H. Neufeld

EM correction to differential distribution of K_{e3}^+ $(y=2E_\ell/M_K,\ z=2E_\pi/M_K)$

H. Neufeld

EM correction to differential distribution of $K^0_{\mu3}$ $(y=2E_\ell/M_K,\ z=2E_\pi/M_K)$

H. Neufeld

EM correction to differential distribution of $K^+_{\mu3}$ $(y=2E_\ell/M_K,\ z=2E_\pi/M_K)$

H. Neufeld

Determination of $\delta^{K\pi}_{{ m SU}(2)}$

$$\delta^{K\pi}_{\mathrm{SU}(2)} = \left\{ egin{array}{ll} 0 & ext{for } K^0_{\ell 3} \ 2\sqrt{3} \Big(arepsilon^{(2)} + arepsilon^{(4)}_{\mathrm{S}} + arepsilon^{(4)}_{\mathrm{EM}} + \dots \Big) & ext{for } K^+_{\ell 3} \end{array}
ight.$$

$$arepsilon^{(2)} = rac{\sqrt{3}}{4} rac{m_d - m_u}{m_s - \widehat{m}} \qquad \widehat{m} = rac{m_u + m_d}{2}$$

 \longrightarrow need determination of quark mass ratio

$$R := rac{m_s - \widehat{m}}{m_d - m_u}$$

double ratio

$$Q^2 := rac{m_s^2 - \widehat{m}^2}{m_d^2 - m_u^2} = rac{m_s/\widehat{m} + 1}{2}$$

can be expressed in terms of meson masses and a purely EM contribution Gasser, Leutwyler 1985

$$Q^2 = rac{\Delta_{K\pi} M_K^2 ig(1 + \mathcal{O}(m_q^2)ig)}{M_\pi^2 ig[\Delta_{K^0K^+} + \Delta_{\pi^+\pi^0} - (\Delta_{K^0K^+} + \Delta_{\pi^+\pi^0})_{ ext{EM}}ig]}, \hspace{1em} \Delta_{PQ} = M_P^2 - M_Q^2$$

 $(\Delta_{K^0K^+} + \Delta_{\pi^+\pi^0})_{\rm EM}$ vanishes to lowest order e^2p^0 Dashen 1969

$$egin{split} &(\Delta_{K^0K^+}+\Delta_{\pi^+\pi^0})_{ ext{EM}}=e^2M_K^2\Bigg[rac{1}{4\pi^2}igg(3\lnrac{M_K^2}{\mu^2}-4+2\lnrac{M_K^2}{\mu^2}igg)\ &+rac{4}{3}(K_5+K_6)^r(\mu)-8(K_{10}+K_{11})^r(\mu)+16ZL_5^r(\mu)\Bigg]+\mathcal{O}(e^2M_\pi^2) \end{split}$$

Urech 1995; Neufeld, Rupertsberger 1995

H. Neufeld

Ananthanarayan, Moussallam 2004: large deviation from Dashen's limit

$$(\Delta_{K^0K^+} + \Delta_{\pi^+\pi^0})_{\mathrm{EM}} = -1.5\,\Delta_{\pi^+\pi^0} \quad \longrightarrow \quad Q = 20.7\pm1.2$$

 $Q = 22.7 \pm 0.8$ Leutwyler 1996

 $Q = 22.0 \pm 0.6$ Bijnens, Prades 1997

 $Q \simeq 20$ Amoros, Bijnens, Talavera 2001

however: $Q = 23.2 \ (\eta \rightarrow 3\pi \text{ at two loops})$ Bijnens, Ghorbani 2007

determinations of second input parameter $m_s/\widehat{m}\sim 24$ rather stable

Kastner, Neufeld 2008

 $\delta_{\mathrm{SU}(2)} = 0.047(4)$ used by FLAVIAnet Working Group 2008

Summary

- ***** CHPT suitable framework for EM corrections in semileptonic decays
- ***** theoretical estimates for all electromagnetic LECs K_i^r, X_i^r
- * first calculation of $R_{e/\mu}^{(\pi,K)}$ at $\mathcal{O}(e^2p^4) \longrightarrow$ small uncertainties challenge for experiment
- ***** EM corrections for all K_{l3} decay modes
- ***** proper treatment of EM corrections mandatory in analysis of $K_{\ell 3}$ data
- ***** (probably) large deviation from Dashen's limit \longrightarrow influence on $\delta_{SU(2)}^{K\pi}$