Measurements of K₁₃ decays by NA48

Rainer Wanke

Institut für Physik, Universität Mainz

for the

NA48 Collaboration

CKM 2008

Rome, September 10, 2008

Overview

The NA48 Detector

Liquid Krypton Calorimeter (LKr)

 $\Delta E/E \approx 1.0\%$ for $E_{e,\gamma} = 20$ GeV/c.

Hadron calorimeter, photon vetos, muon counters

$\frac{\text{Measurement of}}{K^0_{\mu3} \text{ Form Factors}}$

$K_{\mu3}$ matrix element:

$$\mathcal{M} = \frac{G}{\sqrt{2}} V_{us} [\mathbf{f}_+(\mathbf{t})(p_K + p_\pi)^\mu \bar{u}_l \gamma_\mu (1 + \gamma_5) u_\nu + \mathbf{f}_-(\mathbf{t}) m_l \bar{u}_l (1 + \gamma_5) u_\nu]$$

Vector form factor: $f_+(t)$

Scalar form factor:
$$\mathbf{f_0}(\mathbf{t}) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$$

Several different parametrizations on the market:

- Linear Expansion: $f_{+,0}(t) = f_{+,0}(0)(1 + \lambda_{+,0}\frac{t}{m_{\pi}^2})$
- Quadratic Expansion: $f_{+,0}(t) = f_{+,0}(0)(1 + \lambda'_{+,0}\frac{t}{m_{\pi}^2}) + \frac{1}{2}\lambda''_{+,0}\frac{t^2}{m_{\pi}^4})$
- Pole Model: $f_+(t) = f_+(0) \frac{\mathbf{m}_V^2}{\mathbf{m}_V^2 t}$, $f_0(t) = f_0(0) \frac{\mathbf{m}_S^2}{\mathbf{m}_S^2 t}$
- Dispersive Parametrization: (Bernard, Oertel, Passemar, Stern, 2006) $f_{+}(t) = f_{+}(0) \exp\left[\frac{t}{m_{\pi}^{2}}(\mathbf{\Lambda}_{+} + H(t))\right],$ $f_{0}(t) = f_{0}(0) \exp\left[\frac{t}{m_{K}^{2} - m_{\pi}^{2}}(\ln \mathbf{C} - G(t))\right]$

Measurement of $K_{\mu3}$ *Form Factors*

Special run September 1999:

- Around 2 days of low intensity data taking with beam from K_L target only and minimum bias trigger.
- Trigger on just two charged particles.

 ~ 80 million events.

$\mathbf{K}_{\mu \mathbf{3}}$ data selection:

- Two tracks including one muon (muon counter efficiency > 99%).
- Rejection of $K_{3\pi}$ by kinematics.
- Rejection of K_{e3} by E/p in the LKr calorimeter.

 \Rightarrow 2.34 million $\mathbf{K}_{\mu 3}$ events

(Bkgd contamination $\sim 2 \times 10^{-3}$)

Measurement of $K_{\mu3}$ *Form Factors*

Important: Good Monte Carlo description of the data:

Rainer Wanke, Universität Mainz, CKM 2008, Rome, Sep 10, 2008 - p.7/23

Fit to the Dalitz plot: (using solution with lower energy)

Boundary excluded from fit

Four different parametrizations (linear, quadratic, pole, dispersive)

x 10³

Measurement of $K_{\mu3}$ *Form Factors*

Many results for many models:

Linear Parametrization:

 $\lambda_{+} = 0.0267(6)(8)$ $\lambda_{0} = 0.0117(7)(10)$

Correlation: $\rho = -0.40$

Quadratic Parametrization:

 $\lambda'_{+} = 0.0205(22)(24)$ $\lambda''_{+} = 0.0026(9)(10)$ $\lambda_{0} = 0.0095(11)(8)$ Correlations: $\rho_{\lambda'_{+},\lambda''_{+}} = -0.96$ $\rho_{\lambda'_{+},\lambda_{0}} = -0.63$ $\rho_{\lambda''_{+},\lambda_{0}} = -0.73$ PLB 647 (2007) 341

Pole Parametrization:

 $m_V = 905(9)(17) \text{ MeV}/c^2$ $m_S = 1400(46)(153) \text{ MeV}/c^2$ Correlation: $\rho = -0.47$

Dispersive Parametrization:

 $\Lambda_+ = 0.0233(5)(8)$ $\ln C = 0.1438(80)(112)$ Correlation: $\rho = -0.44$

Measurement of $K_{\mu3}$ *Form Factors*

Comparison with other experiments:

Vector form factor:

Good agreement with both other $K_{\mu3}$ and K_{e3} measurements.

Scalar form factor:

- Disagreement with measurements from KTeV and ISTRA+
- Would indicate right-handed currents (Bernard, Oertel, Passemar, Stern, 2006)

$|\mathbf{V}_{\mathbf{us}}|$ Measurement from $\mathbf{K}_{\mathbf{l3}}^{\pm}$

$|V_{us}|$ Measurement from K_{l3}^{\pm}

NA48/2 experiment in 2003/2004:

Simultaneous K^+ and K^- beams with $p_{K^{\pm}} = (60 \pm 3)$ GeV/c.

Minimum bias data taking in 2003:

- 8 hours low intensity K^+/K^- with min. bias trigger.
 - \implies Measurement of leptonic and semileptonic decays.

Method of the Measurement:

- **Normalize** K_{e3} and $K_{\mu3}$ to $K_{2\pi}$
 - \implies very similar topologies and selection criteria.
- Select one track + two photons, consistent with a π⁰ from a common decay vertex.
- Distinction of K_{l3} and $K_{2\pi}$ mainly through kinematics.

 $|V_{us}|$ Measurement from K_{l3}^{\pm}

Rainer Wanke, Universität Mainz, CKM 2008, Rome, Sep 10, 2008 – p.14/23

Yields after all selection criteria applied:

Channel	Acc imes P-ID	\mathbf{K}^+	\mathbf{K}^{-}	Background
Ke3	$\sim 7.0\%$	56195	30 898	< 0.1%
$\mathbf{K}\mu3$	$\sim 9.3\%$	49364	$\mathbf{27525}$	$\sim 0.2\%$
$\mathbf{K2}\pi$	$\sim 14.2\%$	461837	$\mathbf{256619}$	$\sim 0.3\%$

Rainer Wanke, Universität Mainz, CKM 2008, Rome, Sep 10, 2008 – p.15/23

 $|V_{us}|$ Measurement from K_{l3}^{\pm}

Radiative corrections:

- Using Ginsberg prescription for real and virtual photons.
- Real bremsstrahlung photons added with PHOTOS.

⇒ Very good description of data!

Form factors:

- Quadratic expansion for $f_{+}(t)$ ($\lambda'_{+} = 0.02485(163)$, $\lambda''_{+} = 0.00192(62)$) and linear expansion for $f_{0}(t)$ ($\lambda_{0} = 0.00196(34)$) from PDG'06.
- Form factor variations within their errors and difference to pole model parametrization taken as systematic uncertainties.

Results:

EPJC 50 (2007) 329; EPJC 52 (2007) 1021

Accuracy of 0.4%!

Systematics:

- **Ke3/K2** π : Mainly *Ke*3, *K*2 π acceptance, trigger efficiency.
- **K** μ **3**/**K** 2π : Mainly $K\mu$ 3 form factors and Ke3, $K2\pi$ acceptance.

Statistical uncertainties dominate

$|V_{us}|$ Measurement from K_{l3}^{\pm}

Absolute BR's: (Update w.r.t. publication) Use new KLOE measurement of $Br(K_{2\pi(\gamma)}) = 0.2065(5)(8)$, shifted (+0.06%) to $\tau_{K^{\pm}} = 12.370(19)$ ns (average PDG'06 & KLOE'08):

Determination of $|V_{us}|$:

Use $\tau_{K^{\pm}} = 12.370(19)$ ns (average PDG'06 & KLOE'08) and $\delta_{\text{em}}^{e/\mu}$, $\delta_{SU(2)}^{e/\mu}$, $I_{K}^{e/\mu}$ from Flavianet note:

 $\mathbf{Ke3}: |\mathbf{V_{us}}| \mathbf{f_{+}}(\mathbf{0}) = \mathbf{0.21794} \, (\mathbf{43})_{\mathsf{exp}} \, (\mathbf{52})_{\mathsf{norm},\tau} \, (\mathbf{61})_{\mathsf{ext}} = \mathbf{0.2179} (\mathbf{9})$

 $\mathbf{K}\mu\mathbf{3}: |\mathbf{V_{us}}|\mathbf{f_{+}}(\mathbf{0}) = \mathbf{0.21818}\,(\mathbf{46})_{\mathsf{exp}}\,(\mathbf{52})_{\mathsf{norm},\tau}\,(\mathbf{66})_{\mathsf{ext}} = \mathbf{0.2182}(\mathbf{10})$

 \implies Very good agreement between $\mathbf{K_{e3}}$ and $\mathbf{K_{\mu 3}}$

Combination of K_{e3} and $K_{\mu 3}$ (correlations taken into account):

 $|\mathbf{V_{us}}|\,\mathbf{f_+}(\mathbf{0}) = \mathbf{0.2180} \pm \mathbf{0.0008}|$

Finally: Use $f_+(0)=0.964\pm0.005$ (RBC-UKQCD'07):

 $|\mathbf{V_{us}}| = 0.2261 \pm 0.0014$

Test of Lepton Universality:

```
Build ratio \mathbf{Ke3}/\mathbf{K}\mu\mathbf{3}:
```

 $\mathcal{R}_{\mathbf{K}\mu\mathbf{3}/\mathbf{Ke3}}=\mathbf{0.663}\,\pm\,\mathbf{0.003}_{\mathsf{stat}}\,\pm\,\mathbf{0.001}_{\mathsf{sys}}$

Most precise measurement so far and consistent with lepton universality (SM prediction: $\mathcal{R}_{K\mu3/Ke3} = 0.661(3)$ with $\delta_{em}^{e/\mu}$, $\delta_{SU(2)}^{e/\mu}$, $I_K^{e/\mu}$ from Flavianet note).

Turn it around: Assume lepton universality and determine f.f. slope λ_0 : (Bijnens, Colangelo, Ecker, Gasser, hep-ph/9411311)

 $\mathcal{R}_{K\mu3/Ke3} = \frac{0.645 + 2.087\,\lambda_{+} + 1.464\,\lambda_{0} + 3.375\,\lambda_{+}^{2} + 2.573\,\lambda_{0}^{2}}{1 + 3.457\,\lambda_{+} + 4.783\,\lambda_{+}^{2}}$

Use $\lambda_{+} = 0.0296 \pm 0.0008$ (PDG'06):

 $\implies \lambda_0 = 0.0155 \pm 0.0020$

Measurement of K_Se3/K_Le3

Use PDG'06 (Br($K_L e3$) = 0.4053(15), $\tau_L = 51.14(21)$ ns, $\tau_S = 89.58(6)$ ps)

 $\implies \left| \begin{array}{l} \textbf{Br}(\textbf{K_Se3}) = (\textbf{7.05} \pm \textbf{0.18}_{\text{stat}} \pm \textbf{0.16}_{\text{sys}}) \times \textbf{10}^{-4} \right| \\ \end{array} \right|$

In good agreement with KLOE 2006, but larger error.

Conclusions

Form Factor Measurement in K_{L \mu 3}:

More than 2 million events analyzed.

Disagreement with other experiments in scalar form factor.

 $|\mathbf{V}_{us}|$ from \mathbf{K}_{l3}^{\pm} Decays:

Very precise measurements of $\Gamma(\mathbf{K}_{\mathbf{e3}}^{\pm})/\Gamma(\mathbf{K}_{\mathbf{2}\pi}^{\pm})$ and $\Gamma(\mathbf{K}_{\mu\mathbf{3}}^{\pm})/\Gamma(\mathbf{K}_{\mathbf{2}\pi}^{\pm})$.

 $|V_{us}|$ determined from these data: $|V_{us}| = 0.2261 \pm 0.0014$

Ratio $K_{s}e3/K_{L}e3$:

Br($\mathbf{K_{S}e3}$) = (7.05 ± 0.18_{stat} ± 0.16_{sys}) × 10⁻⁴