Measurement of $sin(2\beta)$ in Charmonium

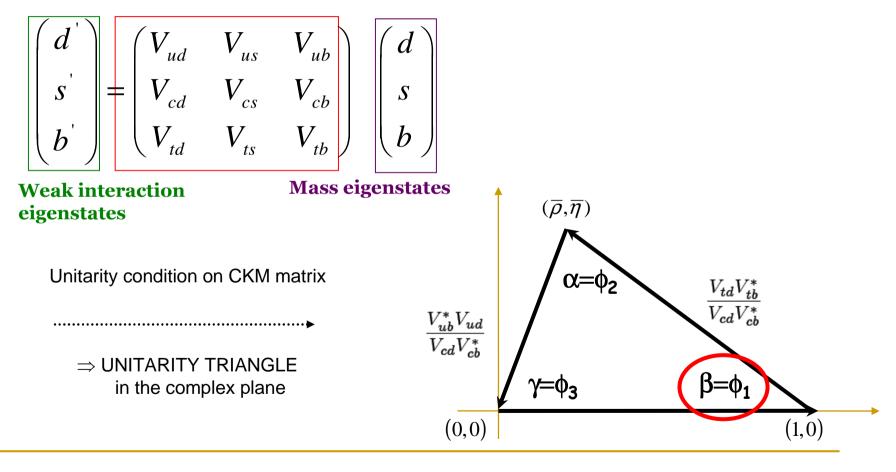
Emilie Martin

University of California at Irvine Representing the BaBar Collaboration CKM08, Rome September 121th, 2008

Outline

- Introduction
 - $\hfill\square$ CP violation (CPV) in the Standard Model and the angle β

Experimental Technique

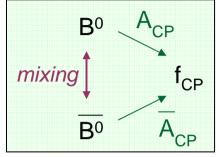

- □ Time-dependent analysis method @ Y(4S)
- $Sin(2\beta)$ in B \rightarrow Charmonium Decays

 $\square b \to c\bar{c}s$

- $B^{o} \rightarrow J/\psi K^{o} (K^{o} \rightarrow K_{S} \text{ or } K_{L})$
- $B^{o} \rightarrow \psi(2S)K_{S}, \eta_{c}K_{S}, \chi_{c1}K_{S}$
- $B^{o} \rightarrow J/\psi K^{*o}(K^{*0} \rightarrow K_{S}\pi^{0})$
- $\square b \to c\bar{c}d$
 - $\bullet \quad B^o \rightarrow J/\psi \pi^o$
- Conclusion

CP Violation in the Standard Model

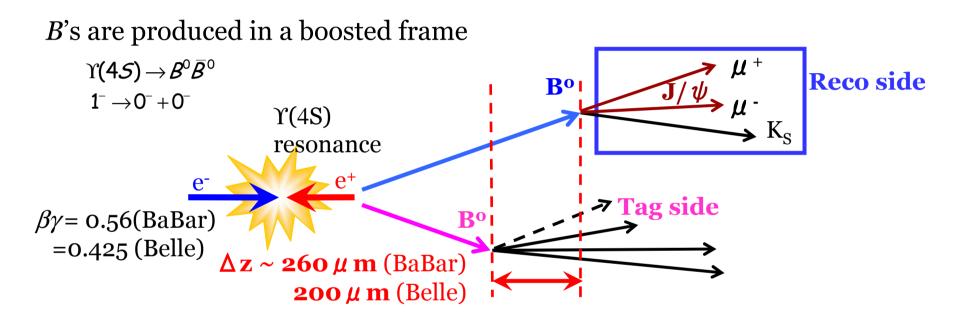
■ SM : single complex phase in Cabibbo-Kobayashi-Maskawa matrix ⇒ CP Violation



CPV in the B system

Time-dependent CP observable

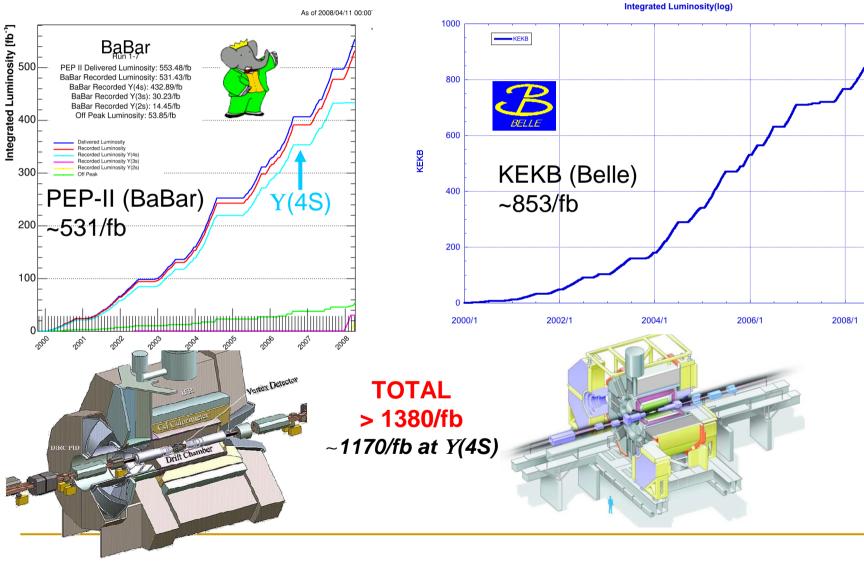
• CPV through interference between mixing and decay amplitudes :


$$\Gamma(B^0(\Delta t) \to f_{CP}) \neq \Gamma(\overline{B}^0(\Delta t) \to f_{CP})$$

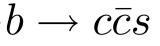
$$\begin{split} A_{CP}(\Delta t) &= \frac{\Gamma(\overline{B}^{0}(\Delta t) \rightarrow f_{CP}) - \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})}{\Gamma(\overline{B}^{0}(\Delta t) \rightarrow f_{CP}) + \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})} = S_{f} \sin(\Delta m \Delta t) - C_{f} \cos(\Delta m \Delta t) \\ where \quad S_{f} &= \frac{-2 \operatorname{Im}(\lambda)}{1 + |\lambda|^{2}} \quad C_{f} = \frac{1 - |\lambda|^{2}}{1 + |\lambda|^{2}} \quad \lambda_{f_{CP}} = \underbrace{q}_{CPV} \underbrace{A_{f_{CP}}}_{QP} \underbrace{decay}_{in \ mixing} \quad \vdots \quad \vdots \\ \mathbf{T} \text{ or a good approximation} \\ C_{f} &= 0 \Rightarrow \underbrace{A_{CP}(t) = -\eta_{f} \sin 2\beta \sin(\Delta m \Delta t)}_{\text{ or maxing}} \quad \eta_{f} = \text{final state CP value} \\ \mathbf{T} \text{ heoretical expectation} : \sin 2\beta = 0.65 \pm 0.12 \end{split}$$

Experimental Technique

CPV studies @ Y(4S): Time-dependent Analysis method



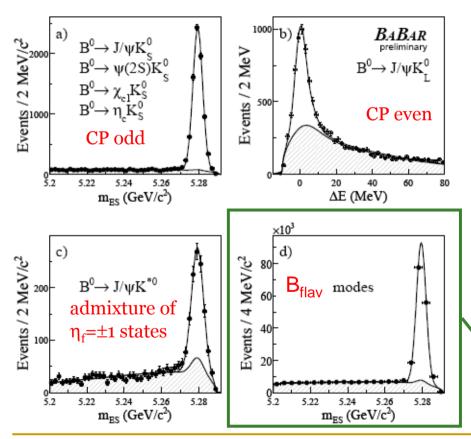
The proper time difference, Δt , is measured from the vertex separation, Δz .


theoretical
$$\Delta t$$

distribution $f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} (1 \pm S_f) \sin(\Delta m \Delta t) \mp C_f \cos(\Delta m \Delta t))$

09/12/2008

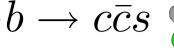
Integrated Luminosity from B Factories


Sin2 β in Charmonium: b \rightarrow ccs transition: the golden modes

BaBar Charmonium Sample

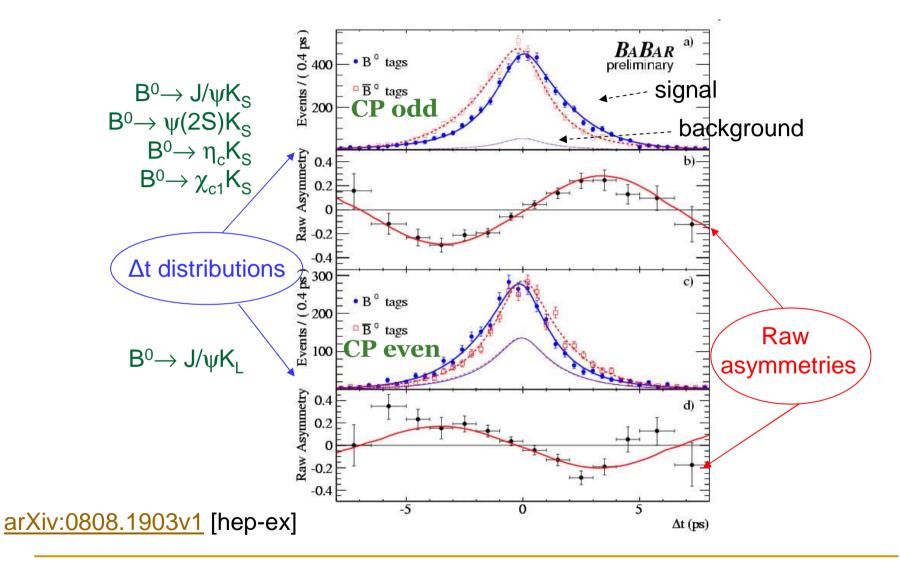
arXiv:0808.1903v1 [hep-ex]

 N_{tag} = Number of events in the signal region satisfying tagging and vertexing requirements. P(%) = purity.


Sample	N_{tag}	P(%)
Full <i>CP</i> sample	15481	76
$J/\psi K_{S}^{0}(\pi^{+}\pi^{-})$	5426	96
$J\!/\psi K_{S}^{0}(\pi^{0}\pi^{0})$	1324	87
$\psi(2S)K_S^0$	861	87
$\chi_{c1}K_S^0$	385	88
$\eta_c K_s^0$	381	79
$J/\psi K^0_L \ J/\psi K^{*0}$	5813	56
	1291	67
$J/\psi K^0$	12563	77
$J\!/\!\psi K^0_S$	6750	95
$\eta_f = -1$	8377	93

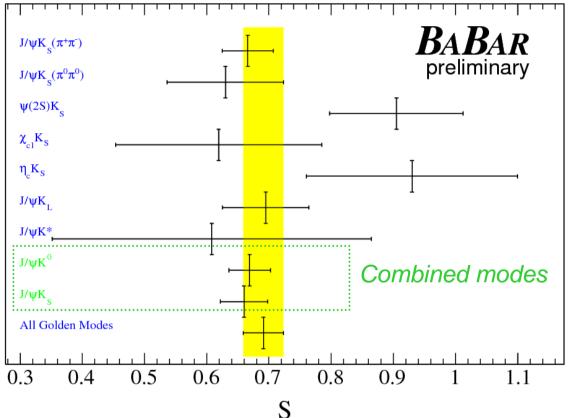
 $(465\pm5)\times10^6 B\overline{B}$

"Bflav" = Flavor eigenstate sample used to determine tagging and vertexing performance in CP sample.


D(*)h⁺ (h⁺ = π^+ , ρ^+ , a_1^+). J/ ψ K^{*o}(K^{*o} \rightarrow K⁺ π^-).

09/12/2008

BaBar Results



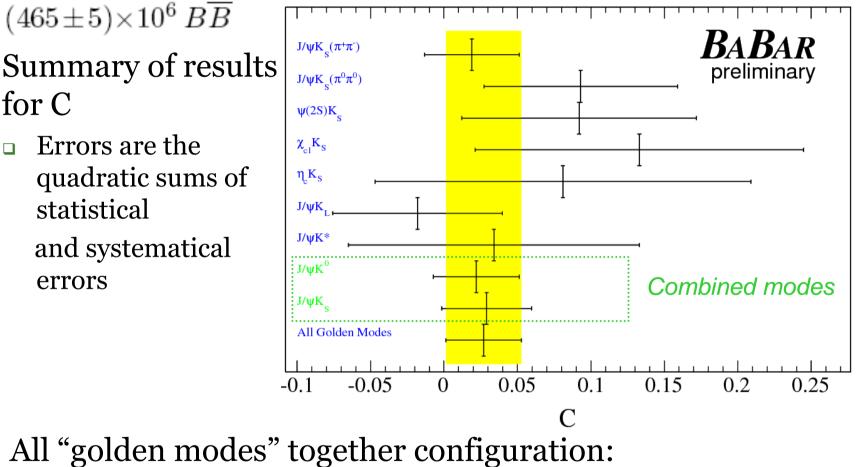
 $b \to c \bar{c} s$

Final Results : S

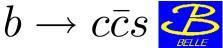
 $(465\pm5)\times10^6 B\overline{B}$

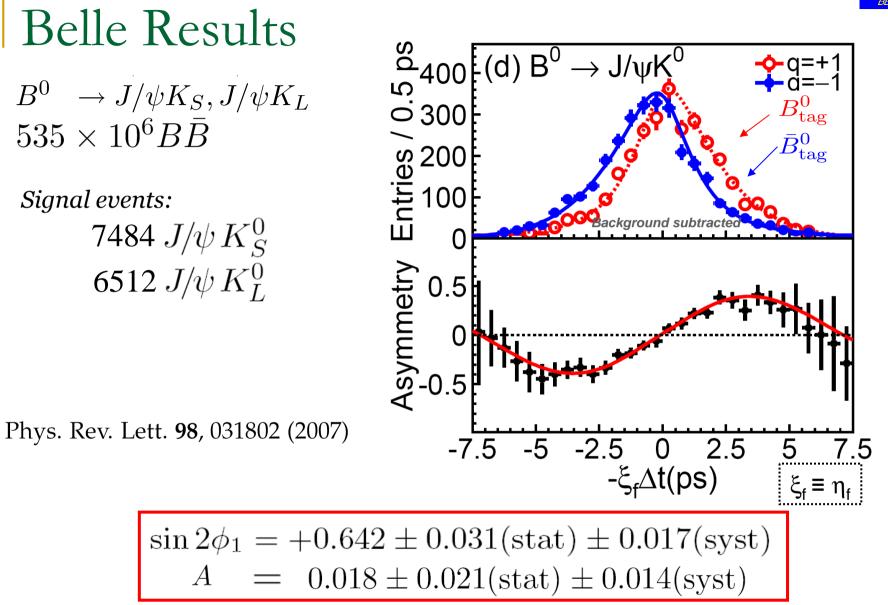
- Summary of results for S
 - Errors are the quadratic sums of statistical and systematical errors

All "golden modes" together configuration:
S = 0.691 ± 0.029 (stat) ± 0.014 (syst)

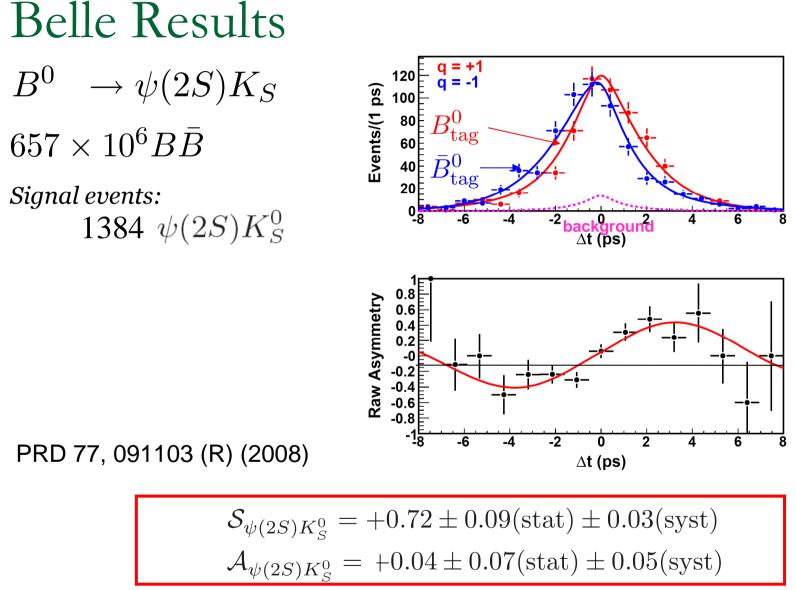

 $b \to c \bar{c} s$

Final Results : C

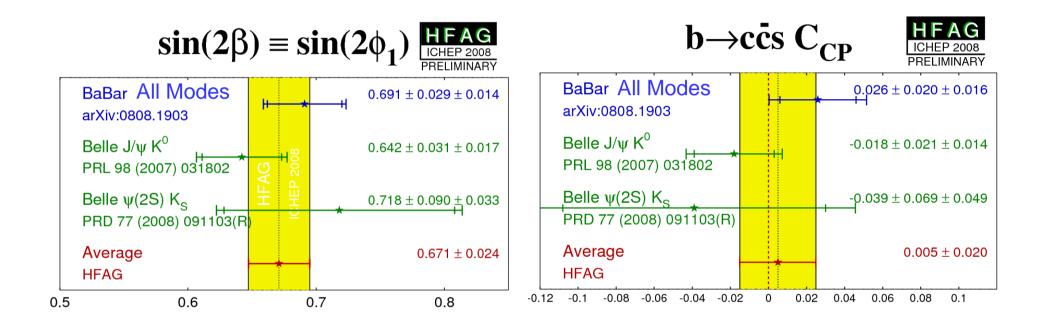

 $(465\pm5)\times10^6 B\overline{B}$

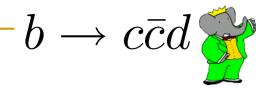

- Summary of results for C
 - Errors are the quadratic sums of statistical

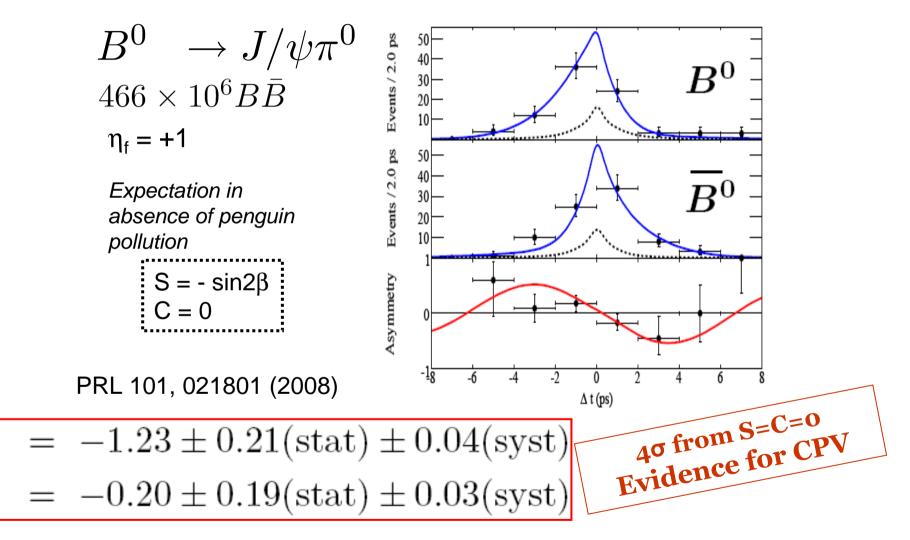

and systematical errors



 $C = 0.026 \pm 0.020$ (stat) ± 0.016 (syst)

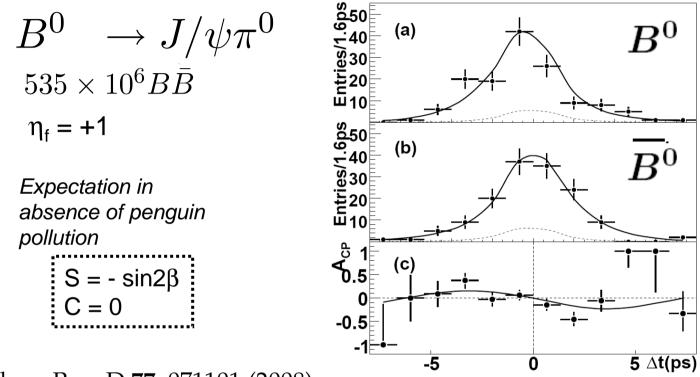




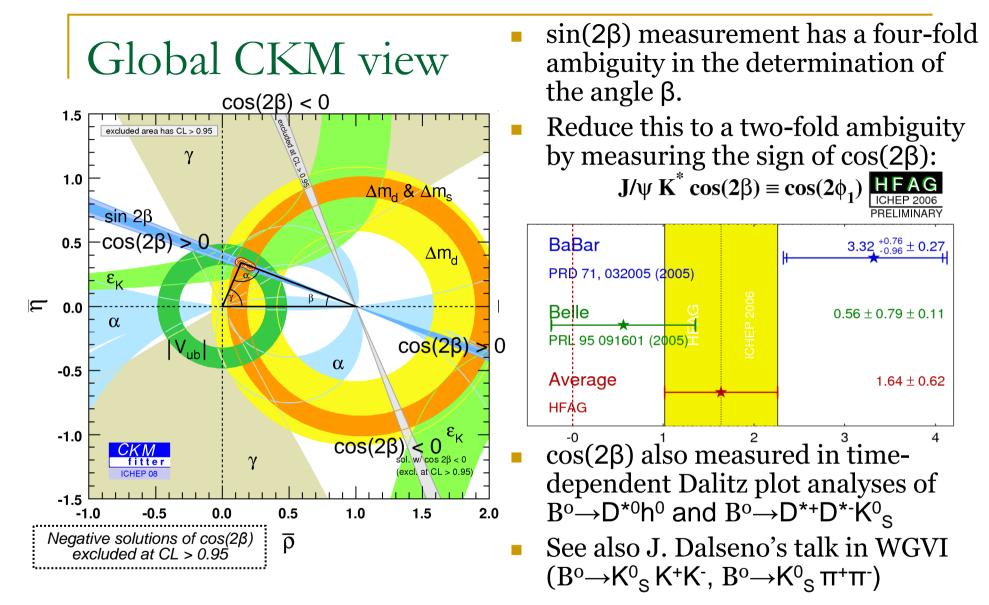


[SM expectation: C=0, $S=sin2\beta$]

Sin2 β in Charmonium: b \rightarrow ccd transition

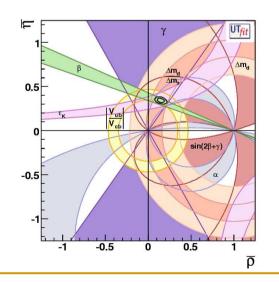

BaBar Result

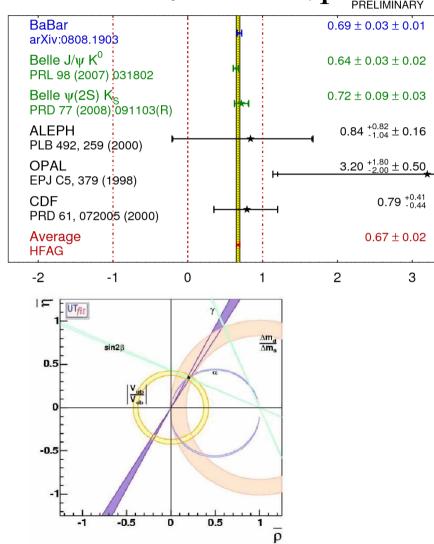
S


Belle Result

Phys. Rev. D 77, 071101 (2008)

$$\mathcal{S}_{J/\psi \pi^0} = -0.65 \pm 0.21 (\text{stat}) \pm 0.05 (\text{syst}) \mathcal{A}_{J/\psi \pi^0} = +0.08 \pm 0.16 (\text{stat}) \pm 0.05 (\text{syst})$$

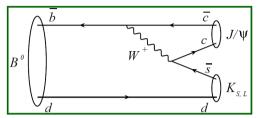


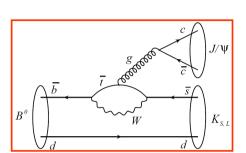


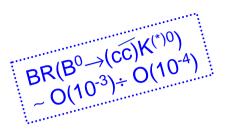
Excellent agreement with Standard Model!

Conclusion and Outlook $\sin(2\beta) \equiv \sin(2\phi_1)$ HFAG

- $sin(2\beta)\equiv sin(2Φ_1)$ has been measured in B → Charmonium decays with great accuracy.
 - Excellent agreement with Standard Model.
- Looking forward to high precision measurements from at LHCb, SuperB and KEKb upgrade!




Back up


Theoretical background

• $b \rightarrow c\bar{cs}$ transition:

colour suppressed tree diagram the tree)

gluonic penguin (same weak phase wrt

Standard Model predictions: penguin amplitude « tree amplitude

 $\Rightarrow \mathbf{S}_{golden} = \eta_{golden} \sin 2\beta, \quad \mathbf{C}_{golden} = \mathbf{0} \qquad (\eta_f = CP \text{ eigenvalue})$

Theoretical uncertainties:

[M. Ciuchini, M. Pierini, L. Silvestrini, Phys.Rev. Lett. 95,221804 (2005)]

- model independent data-driven calculation: assuming SU(3) invariance, use $B^o \rightarrow J/\psi\pi^o$ data to constrain penguin pollution in $J/\psi K^o \Rightarrow \Delta S_{J/\psi Ko} = S_{J/\psi Ko} - \sin 2\beta = 0.000 \pm 0.012$
- theoretical estimates

$$\Delta S_{J/\psi Ko} = S_{J/\psi Ko} - \sin 2\beta \sim O(10^{-3})$$

 $\Delta S_{J/\psi Ko} = S_{J/\psi Ko} - \sin 2\beta \sim O(10^{-4})$

[H. Li, S. Mishima hep-ph/0610120] [Boos et al. Phys. Rev. D 70 0360006 (2006)]

Fit configuration

- RooFit-based fitter almost unchanged since previous analysis
- Fit CP and BFlav sample simultaneously to measure C and S
 - **□** previous fit sin2β and λ
- Signal
 - triple gaussian resolution function
 - mistag parameters and tag efficiency split by tagging categories
 - reconstruction efficiency difference between Bo and Bo fitted
- Background sources
 - continuum events : prompt time dependent component
 - B⁺B⁻ and B^oB^o : combinatorial bgd with "effective" lifetime B⁺B⁻ and B^oB^o and mixing frequency
 - bg effective mixing frequency was fixed to Δmd now a free parameter in the fit
 - Vary between o and △md to evaluate sys error
 - peaking background
- *Fit input*
 - $\Box \quad \Delta m_d, t_{Bo}, t_{B+} \text{ from PDG 2006}$
 - effective CP eigenvalue for $B^{o \rightarrow} J/\psi K^{*o}(K_s \pi^o)$ from Run1-4 Angular analysis
 - peaking background fraction computed on inclusive J/ψ and generic MC
 - \Box J/ ψ K_L background parameters from J/ ψ sidebands and inclusive J/ ψ MC

Systematic Errors

- The table shows a summary of the systematic error for the configuration where all the modes are fitted together.
- Each systematic error is also calculated for each fit configuration and modes.

Source/sample		Full
Beamspot	S_f	0.0013
	C_{f}	0.0006
Mistag differences	S_{f}	0.0077
	C_{f}	0.0047
Δt resolution	S_{f}	0.0067
	C_{f}	0.0027
$J/\psi K_L^0$ background	S_f	0.0057
	C_{f}	0.0007
Background fraction	S_f	0.0046
and $C\!P$ content	C_{f}	0.0029
m_{ES} parameterization	S_{f}	0.0022
	C_{f}	0.0004
$\Delta m_d, \tau_B, \Delta \Gamma_d / \Gamma_d$	S_{f}	0.0030
	$\frac{C_f}{S_f}$	0.0013
Tag-side interference	S_f	0.0014
	C_{f}	0.0143
Fit bias	S_f	0.0023
(MC statistics)	C_{f}	0.0026
Total	S_f	0.0135
	$\dot{C_f}$	0.0164

Systematic Errors by mode (1/2)

Source/sample		Full	$J\!/\!\psiK^0$	$J\!/\psiK^0_S$	$J/\psi K_L^0$
Beamspot	S_f	0.0013	0.0021	0.0027	0.0000
	C_{f}	0.0006	0.0010	0.0021	0.0001
Mistag differences	S_{f}	0.0077	0.0057	0.0059	0.0083
	C_{f}	0.0047	0.0069	0.0053	0.0052
Δt resolution	S_{f}	0.0067	0.0068	0.0069	0.0071
	$\dot{C_f}$	0.0027	0.0029	0.0034	0.0070
$J/\psi K_L^0$ background	S_f	0.0057	0.0063	0.0000	0.0271
	C_{f}	0.0007	0.0008	0.0000	0.0036
Background fraction	S_{f}	0.0046	0.0034	0.0036	0.0044
and $C\!P$ content	C_{f}	0.0029	0.0021	0.0009	0.0107
m_{ES} parameterization	S_{f}	0.0022	0.0020	0.0026	0.0006
	C_{f}	0.0004	0.0005	0.0008	0.0002
$\Delta m_d, \tau_B, \Delta \Gamma_d / \Gamma_d$	S_{f}	0.0030	0.0033	0.0036	0.0040
	$\dot{C_f}$	0.0013	0.0012	0.0011	0.0013
Tag-side interference	S_f	0.0014	0.0014	0.0014	0.0014
	C_{f}	0.0143	0.0143	0.0143	0.0143
Fit bias	S_f	0.0023	0.0044	0.0041	0.0063
(MC statistics)	C_{f}	0.0026	0.0044	0.0041	0.0060
Total	S_f	0.0135	0.0131	0.0119	0.0311
	C_{f}	0.0164	0.0187	0.0167	0.0270

Systematic Errors by mode (2/2)

Source/sample		$J\!/\psiK^0_{\scriptscriptstyle S}(\pi^+\pi^-)$	$J\!/\!\psiK^0_S(\pi^0\pi^0)$	$\psi(2S)K^0_s$	$\chi_{c1}K^0_s$	$\eta_c K_s^0$	$J\!/\!\psiK^{*0}$
Beamspot	S_f	0.0027	0.0020	0.0078	0.0284	0.0010	0.0058
	C_{f}	0.0017	0.0032	0.0084	0.0115	0.0001	0.0001
Mistag differences	S_f	0.0075	0.0074	0.0089	0.0065	0.0064	0.0117
	C_{f}	0.0039	0.0046	0.0052	0.0067	0.0047	0.0019
Δt resolution	S_f	0.0072	0.0074	0.0072	0.0099	0.0163	0.0259
	C_{f}	0.0030	0.0043	0.0070	0.0039	0.0036	0.0062
$J/\psi K_L^0$ background	S_f	0.0001	0.0000	0.0001	0.0000	0.0001	0.0001
	C_f	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Background fraction	S_f	0.0032	0.0073	0.0156	0.0174	0.0506	0.0564
and $C\!P$ content	C_{f}	0.0012	0.0034	0.0056	0.0098	0.0187	0.0256
m_{ES}	S_f	0.0021	0.0089	0.0238	0.0061	0.0023	0.0372
parameterization	C_{f}	0.0007	0.0063	0.0008	0.0017	0.0005	0.0080
$\Delta m_d, \tau_B, \Delta \Gamma_d / \Gamma_d$	S_f	0.0031	0.0073	0.0157	0.0025	0.0158	0.0140
	C_{f}	0.0014	0.0013	0.0010	0.0009	0.0020	0.0013
Tag-side interference	S_f	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
	C_{f}	0.0143	0.0143	0.0143	0.0143	0.0143	0.0143
Fit bias	S_f	0.0048	0.0040	0.0079	0.0072	0.0073	0.0271
(MC statistics)	$\dot{C_f}$	0.0042	0.0030	0.0019	0.0042	0.0070	0.0389
Total	S_f	0.0129	0.0179	0.0365	0.0398	0.0566	0.0876
	C_{f}	0.0160	0.0187	0.0209	0.0257	0.0271	0.0540