Dispersive approaches for K<sub>13</sub> form factors.

Emilie Passemar, ITP, Bern passemar@itp.unibe.ch

CKM 08 10 September 2008 University of "La Sapienza", Rome

 Collaborators: V.Bernard (LPT-Strasbourg) M.Oertel (LUTH-Meudon) J.Stern (IPN-Orsay)

 Papers: Phys. Lett. B638:480, 2006 (hep-ph/0603202) Phys. Lett. B, 2008 (Arxiv: 0711.3450 [hep-ph]) + In preparation

In the memory of Jan Stern

## Outline

- 1. Introduction and Motivation
- 2. Dispersive representation of the scalar and vector form factors
- 3. Results of the dispersive analysis
- 4. Matching of the 2 loop ChPT with the dispersive representation of the  $K\pi$  scalar form factor

1. Introduction and Motivation

## 1.1 Definition

- $K_{I3}$  decays  $K \rightarrow \pi l v_l$
- The hadronic matrix element :

 $\langle \pi(p_{\pi}) | \overline{s} \gamma_{\mu} u | K(\mathbf{p}_{K}) \rangle = f_{+}(t) (p_{K} + p_{\pi})_{\mu} + f_{-}(t) (p_{K} - p_{\pi})_{\mu}$ 

 $\rightarrow$  f<sub>+</sub>(t), f<sub>-</sub>(t) : form factors

$$\rightarrow t = q^2 = (p_{\mu} + p_{\nu_{\mu}})^2 = (p_K - p_{\pi})^2$$

• Analysis in terms of  $f_+(t)$  and  $f_s(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$ 

$$\rightarrow \text{Normalization} \quad \overline{f}_+(t) = \frac{f_+(t)}{f_+(0)} \quad \text{and} \quad \overline{f}_0(t) = \frac{f_s(t)}{f_+(0)}, \quad \overline{f}_+(t) = \overline{f}_0(0) = 1$$

- $f_{\scriptscriptstyle +}(t)$  accessible in  $K_{e3}$  and  $K_{_{\mu 3}}$  decays
- f<sub>0</sub>(t) only accessible in K<sub>μ3</sub> (suppressed by m<sub>l</sub><sup>2</sup>/M<sub>K</sub><sup>2</sup>) + correlations
   difficult to measure.



## **1.2 Extraction of Vus**

Decay rate formula for  $K_{I3}$ 

$$l = (e, \mu)$$

$$\Gamma_{K^{+/0}I3} = \frac{Br_{K^{+/0}I3}}{\tau_{K^{+/0}}} = \frac{C_{K}^{2}G_{F}^{2}m_{K^{+/0}}^{5}}{192\pi^{3}}S_{EW}\left(1+2\Delta_{K^{+/0}I}^{EM}\right)\left|f_{+}^{K^{+/0}}\left(0\right)\mathcal{V}_{us}\right|^{2}I_{K^{+/0}I}^{l}}{I_{K^{+/0}I}^{2}}$$
Kaon life time
<sup>1</sup>/<sub>2</sub> for K<sup>+</sup>, 1 for K<sup>0</sup>

$$I_{K^{+/0}I}^{l} = \int dt \frac{1}{m_{K^{+/0}I}^{8}}\lambda_{K^{+/0}I}^{3/2}F\left(t,\overline{f}_{+}(t),\overline{f}_{0}(t)\right)$$

Experimental inputs:  $\rightarrow Br_{K^{+/0}l3}, \tau_{K^{+/0}}$ 

KI3 branching ratios, Kaon life time, with good treatment of radiative corrections



→  $I_{K^{+/0}}^{l}$  Phase space integrals, need form factor shapes extracted from Dalitz plot, from NA48, KTeV, KLOE and ISTRA+.

Theoretical inputs:

 $S_{EW}$ Short distance EW corrections [Marciano&Sirlin]

→  $\Delta_{K^{+/0}I}^{EM}$  Long distance EM corrections (use of ChPT)

[Bijnens&Prades'97],[Knecht et al'00], [Cirigliano et al '02'04] [Andre'04], [Gatti'05],[Moussallam et al'06], [Cirigliano, Giannotti, Neufeld '08]

## 1.2 Extraction of Vus



#### 1.3 Theoretical knowledge for the scalar FF: CT relation

• Callan-Treiman Theorem: SU(2) x SU(2) theorem

$$C = \overline{f_0}(\Delta_{K\pi}) = \frac{F_K}{F_\pi f_+^{K^0}(0)} + \Delta_{CT}$$
$$\Delta_{K\pi} = m_K^2 - m_\pi^2$$

- Corrections of order m<sub>u</sub>, m<sub>d</sub>
  - → No chiral logarithms :  $\Delta_{CT} \sim \mathcal{O}\left(m_{u,d} / 4\pi F_{\pi}\right)$
  - → Isospin limit  $m_d = m_{u:} \Delta_{CT}^{NLO} \sim -3.5.10^{-3}$  [Gasser & Leutwyler]
  - → K<sup>0</sup> decay : no small denominators due to  $\pi^0 \eta$  mixing  $(\mathcal{O}((m_d m_u) / m_s))$ .
  - → K<sup>+</sup> decay case : enhancement by  $\pi^0$   $\eta$  mixing in the final state

 $\implies \Delta_{c\tau}^{K^+} \sim few \ 10^{-2} \qquad (K^0 \text{ ideal decay})$ 

• Estimations of the higher order terms: corrections in  $\mathcal{O}(m_{u,d} \cdot m_s)$  $\implies \Delta_{cT} = (-3.5 \pm 8) \cdot 10^{-3}$ 

#### 1.3 Theoretical knowledge for the scalar FF: CT relation

• Callan-Treiman Theorem: SU(2) x SU(2) theorem

$$C = \overline{f_0}(\Delta_{K\pi}) = \frac{F_K}{F_\pi f_+^{K^0}(0)} + \Delta_{CT}$$
$$\Delta_{K\pi} = m_K^2 - m_\pi^2$$

- Estimations of the higher order terms: corrections in  $\mathcal{O}(m_{u,d}.m_s)$  $\implies \Delta_{cT} = (-3.5 \pm 8).10^{-3}$
- In agreement with estimate

- at 
$$\mathcal{O}(p^4, e^2 p^2, (m_d - m_u) p^2)$$
  
 $\Delta_{CT}^{K^0} = (1.7 \pm 7) \cdot 10^{-3}$ 
[Kastner & Neufeld'08]  
 $\Delta_{CT}^{K^+} = (-10.4 \pm 7) \cdot 10^{-3}$ 

## 1.4 Test of the Standard Model.

$$C_{SM} = \overline{f}_{0}(\Delta_{K\pi}) = \frac{F_{K} |\mathcal{V}^{us}|}{F_{\pi} |\mathcal{V}^{ud}|} \frac{1}{f_{+}(0) |\mathcal{V}^{us}|} |\mathcal{V}^{ud}| + \Delta_{CT}$$
  
Solution the Standard Model using the measured E

• C is predicted in the Standard Model using the measured Br:  $Br(K_{l2}/\pi_{l2})$ ,  $\Gamma(K_{e3})$  and  $|V_{ud}|$ . ( $|V_{us}|$  not needed in this prediction.)

 $B_{\rm exp} = 1.2446 \pm 0.0041$ 

$$\ln C_{SM} = 0.2188(35) + \Delta_{CT}$$

- Relation which tests the Standard Model very accurately for K<sup>0</sup>. If physics beyond the SM: ~1% difference between C and B<sub>exp</sub>. Uncertainties from ∆<sub>CT</sub> and B<sub>exp</sub> on the permile level → opportunity to see a possible effect.
- Possible test of the lattice results for  $F_K/F_{\pi}$ ,  $f_+(0)$ .

## 1.5 Matching with the ChPT 2 loop calculations

- Measurement of slope and curvature of the scalar form factor from experiments is determination of
  - $F_{\kappa}/F_{\pi}$
  - $f_{+}(0)$
  - C  $_{12}$  and C  $_{34},\,$  2  $\mathcal{O}(p^6)$  LECs which enters  $K_{I3}$  decays
  - Callan-Treiman correction  $\Delta_{CT}$
- Why?
  - LECs play an important role in ChPT calculations, enter different processes. Ex: C<sub>12</sub> into  $\eta \rightarrow 3\pi$  [Bijnens&Ghorbani'07].
  - Possibility to test the lattice calculation and resonance model estimates
  - Test of the Standard Model, knowledge of  $f_+(0) \implies$  extraction of  $V_{us}$

## 1.6 How to measure the form factor shapes ?

- Data available from KTeV, NA48 and KLOE for K<sup>0</sup> and from ISTRA+, NA48 and KLOE for K<sup>+</sup>.
- Necessity to parametrize the 2 form factors  $\overline{f}_+(t)$  and  $\overline{f}_0(t)$  to fit the measured distributions.
- Different parametrizations available, 2 classes of parametrizations :
  - → 1<sup>rst</sup> class: parametrizations based on mathematical rigourous expansion, the slope and the curvature are free parameters :
    - Taylor expansion

$$\overline{f}_{+,0}(t) = 1 + \lambda_{+,0}' \frac{t}{m_{\pi}^2} + \frac{1}{2} \lambda_{+,0}'' \frac{t}{m_{\pi}^2} + \dots$$

 Z-parametrization, conformal mapping from t to z variable with |z|<1 improve the convergence of the series.

$$f_{+,s}(t) = f_{+,s}(t_0) \frac{\phi(t_0, t_0, Q^2)}{\phi(t, t_0, Q^2)} \sum_{k=0}^n a_k(t_0, Q^2) z(t, t_0)^k \quad \text{[Hill'06]}$$

Theoretical error can be estimated : for a specific choice of  $\phi$ ,  $\sum_{k=0}^{2} a_k^2$  bounded  $\longrightarrow$  use of some high-energy inputs ( $\tau$  data ...).

- → 2<sup>nd</sup> class: parametrizations which by using physical inputs impose specific relations between the slope and the curvature
  - $\implies$  reduce the correlations, only one parameter fit.
    - Pole parametrization, the dominance of a resonance is assumed

$$\overline{f}_{+,0}(t) = \frac{m_{V,S}^2}{m_{V,S}^2 - t} \qquad \mathrm{m}_{\mathrm{V},\mathrm{S}}$$

n<sub>v.s</sub> is the parameter of the fit

 Dispersive parametrization: use of the low energy Kπ scattering data and presence of resonances to contrain by dispersion relations the higher order terms of the expansion. Analysis from [Jamin, Oller, Pich'04], [Bernard, Oertel, E.P, Stern'06], for the scalar form factor and from [Moussallam'07], [Jamin, Pich &Portoles'08] for the vector form factor using τ data.

- Two requirements in the measurements of the form factor shapes from the  $K_{\mbox{\tiny I3}}$  data
  - Try to measure the form factor shapes from the data with the best accuracy and the slope and curvature of the scalar form factor are of special interest to allow for a matching with the 2 loop ChPT calculations.
  - Measurement of  $\overline{f}_0(\Delta_{K\pi}) \equiv C$  to test the Standard Model via the CT correction
- Experimental constraints: if one uses a parametrization from 1rst class, for example a Taylor expansion,
  - Only two parameters measurable for the vector form factor,  $\lambda'_{+}$  and  $\lambda_{+}$ "
  - Only one parameter accessible for the scalar form factor  $\lambda'_0$
  - The correlations are strong,

$$\begin{array}{c|cccccc} \lambda'_{0} & 1 & -0.9996 & -0.97 & 0.91 \\ \lambda''_{0} & 1 & 0.98 & -0.92 \\ \lambda'_{+} & 1 & -0.98 \\ \lambda''_{+} & 1 & 1 \end{array}$$
[Franzini]

• Using a linear parametrization, it is impossible to extrapolate with a good precision up to the CT point !



- Necessity to use a second class parametrization which reduces the correlation, only one parameter is fitted.
  - For the vector form factor pole parametrization with dominance of the K\*(892) in good agreement with the data.
  - For the scalar form factor, not a such obvious dominance in necessity of a dispersive parametrization to improve the extraction of the ff parameters.

2. Dispersive Representation of the  $K\pi$  form factors

## 2.1 Dispersive parametrization for the scalar FF

- Problem : How to construct a very precise representation of  $f_0(t)$  between 0 and  $\Delta_{K\pi}$  ?
- Knowledge :
  - $\rightarrow \overline{f}_0(0) = 1$
  - $\rightarrow \overline{f}_0(\Delta_{K\pi}) = C$ , Callan-Treiman point
  - $\rightarrow$  K $\pi$  scattering phase
  - → Asymptotic behaviour of the form factor :  $\overline{f_0}(s) = \mathcal{O}(1/s)$
- A dispersion relation with two substractions at 0 and  $\Delta_{K\pi}$  for  $ln(\overline{f_0}(t))$ , assuming that  $\overline{f_0}(t)$  has no zero

$$\overline{f}_{0}(t) = \exp\left[\frac{t}{\Delta_{K\pi}} (\ln C - G(t))\right]$$
 with

$$G(t) = \frac{\Delta_{K\pi}(\Delta_{K\pi} - t)}{\pi} \int_{t_{K\pi}}^{\infty} \frac{ds}{s} \frac{\phi(s)}{(s - \Delta_{K\pi})(s - t)}$$

 $\rightarrow \phi(t)$  phase of the form factor :  $\overline{f_0}(t) = \left|\overline{f_0}(t)\right| e^{i\phi(t)}$ 



16

#### Phase used



• Elastic up to ~1.5 GeV  $\implies t < \Lambda : \phi(t) = \phi_{K\pi}(t) = \delta_{\pi,K}^{s,\frac{1}{2}}(t) \pm \Delta \delta_{\pi,K}^{s,\frac{1}{2}}(t)$ [Watson theorem]

$$t > \Lambda$$
 :  $\phi(t) = \phi_{as}(t) = \pi \pm \pi$ 

2 subtractions Rapid convergence of G(t)

17



- Study of the robustness :
  - Result not sensitive to  $\Lambda$  (G(0) remains stable)
  - Isospin breaking corrections
  - Influence of a zero
- Apart from the parameter (InC) to be determined by the fit, very precise parametrization of the form factor in the physical region. 18

# 2.2 Dispersive parametrization of the $K\pi$ vector form factor

- We can also write a dispersion relation for the vector form factor, improving the pole parametrization. In this case the presence of K\*(892) is assumed.
- In the same way as for the scalar form factor, a dispersion relation with two subtractions for  $ln(\bar{f}_{+}(t))$ : 2 subtraction points at low energy :

$$\overrightarrow{f}_{+}(0) = 1$$

$$\overrightarrow{f}_{+}(0) = \Lambda_{+} / m_{\pi}^{2}$$

Assuming f<sub>+</sub>(t) has no zero

$$\overline{f}_{+}(t) = \exp\left[\frac{t}{m_{\pi}^{2}} \left(\Lambda_{+} + H(t)\right)\right] \quad \text{with} \quad H(t) = \frac{m_{\pi}^{2}t}{\pi} \int_{t_{\pi K}}^{\infty} \frac{ds}{s^{2}} \frac{\varphi(s)}{(s-t)}$$

 $\rightarrow \varphi(t)$  phase of form factor :  $\overline{f}_{+}(t) = \left|\overline{f}_{+}(t)\right| e^{i\varphi(t)}$ 

•  $\varphi(s)$  a priori unknown but

 $\rightarrow \overline{f}_{+}(s)^{s} \stackrel{\scriptscriptstyle 2}{=} \overset{\circ}{\mathcal{O}}(1/s)$  → For large s,  $\varphi(s) \rightarrow \pi$ . Rapid convergence of H(t)

→ At « low energy »  $\varphi(s) = \delta_{K\pi}^{1/2}(s)$ , P wave I=1/2 K $\pi$  scattering phase [Watson theorem].

- $K\pi$  scattering phase
  - > Experimental input for 0.825 GeV < E < 2.5 GeV [Aston et al].
  - Extrapolation of the phase down to threshold complicated inputs.
  - Construction of the partial wave amplitude : Breit-Wigner (K\*(892)) a la Gounaris-Sakourai (Analyticity, Unitarity and Correct threshold behavior) Inputs: mass and width of K\*(892).



• Study of the robustness: H(t) precisely known.

3. Results of the dispersive analysis

| NA48                                     | $K_{\mu 3}$ seuls   |   | KLOE                          | $K_{\mu3}$ et $K_{e3}$ combinés |
|------------------------------------------|---------------------|---|-------------------------------|---------------------------------|
| $\Lambda_+ \times 10^3$                  | $23.3 \pm 0.9$      | 1 | $\Lambda_+ \times 10^3$       | $25.7 \pm 0.6$                  |
| $\ln C$                                  | $0.1438 \pm 0.0138$ |   | $\ln C$                       | $0.204 \pm 0.025$               |
| $\rho(\Lambda_+, \ln C)$                 | -0.44               |   | $\rho(\Lambda_+, \ln C)$      | -0.27                           |
| $\chi^2/dof$                             | 595/582             |   | $\chi^2/dof$                  | 2.6/3                           |
| $\lambda'_{+} \times 10^{3}$             | $23.33 \pm 0.9$     |   | $\lambda'_{+} \times 10^{3}$  | $25.7 \pm 0.6$                  |
| $\lambda_{+}^{\prime\prime} \times 10^3$ | $1.3 \pm 0.1$       |   | $\lambda''_{+} \times 10^{3}$ | $1.1 \pm 0.1$                   |
| $\lambda_0' \times 10^3$                 | $8.9 \pm 1.2$       |   | $\lambda_0' \times 10^3$      | $14.0 \pm 2.1$                  |
| $\lambda_0'' \times 10^3$                | $0.50 \pm 0.05$     |   | $\lambda_0'' 	imes 10^3$      | $0.50 \pm 0.06$                 |

| KTeV                                     | $K_{e3}$ seuls   | $K_{\mu 3}$ seuls   | $K_{e3}$ et $K_{\mu3}$ combinés |
|------------------------------------------|------------------|---------------------|---------------------------------|
| $\Lambda_+ \times 10^3$                  | $25.17 \pm 0.58$ | $24.57 \pm 1.10$    | $25.09 \pm 0.55$                |
| $\ln C$                                  | -                | $0.1947 \pm 0.0140$ | $0.1915 \pm 0.0122$             |
| $\rho(\Lambda_+, \ln C)$                 | -                | -0.557              | -0.269                          |
| $\chi^2/dof$                             | 66.6/65          | 193/236             | 0.48/2                          |
| $\lambda'_{+} \times 10^{3}$             | $25.17 \pm 0.58$ | $24.57 \pm 1.10$    | $25.09 \pm 0.55$                |
| $\lambda_{+}^{\prime\prime} \times 10^3$ | $1.22 \pm 0.03$  | $1.19 \pm 0.05$     | $1.21 \pm 0.03$                 |
| $\lambda_0' \times 10^3$                 | -                | $13.22 \pm 1.20$    | $12.95 \pm 1.04$                |
| $\lambda_0'' \times 10^3$                | -                | $0.59 \pm 0.03$     | $0.58 \pm 0.03$                 |

| Experiment                     | In C      |
|--------------------------------|-----------|
| Ke3+Kµ3                        |           |
| KTeV+BOPS Prel.                | 0.192(12) |
| KLOE'08                        | 0.204(25) |
| NA48'07 (K <sub>µ3</sub> only) | 0.144(14) |

• To be compared with

$$\ln C_{SM} = 0.2160(35)(64)$$

KLOE and KTeV in agreement and in agreement with the SM. NA48  $4.5\sigma$  away !

- A deviation from the SM prediction can be explained :
  - Test of RHCs appearing at NLO of an EW low energy effective theory as a signature of exchange of new particules (W<sub>R</sub>,...) at high energy.
     [Bernard, Oertel, E.P., Stern'06]
  - Presence scalar couplings (charged Higgs) : [Hou]
     MFV + large tanβ : hard to explain a 4.5σ effect (~several% level) [Isidori, Paradisi'06]
  - Existence of a complex zero and its complex conjugate for the form factor [Bernard, Oertel, E.P., Stern, work in progress]

3. Matching of the 2 loop ChPT with the dispersive representation of the  $K\pi$  scalar form factor

# 3.1 Computation of K<sub>13</sub> form factors at 2 loops in the isospin limit [Bijnens&Talavera'03]

• The scalar form factor at two loops in the isospin limit

$$f_{S}(t) = f_{+}(0) + \overline{\Delta}(t) + \frac{F_{K}/F_{\pi} - 1}{\Delta_{K\pi}}t + \frac{8}{F_{\pi}^{4}} \left(2C_{12}^{r} + C_{34}^{r}\right) \left(m_{K}^{2} + m_{\pi}^{2}\right)t - \frac{8}{F_{\pi}^{4}}t^{2}C_{12}^{r}$$

- The vector form factor  $f_+(0)$  at 2 loops in the isospin limit is expressed as  $f_+(0) = 1 + \Delta(0) - \frac{8}{F_{\pi}^4} (C_{12}^r + C_{34}^r) \Delta_{K\pi}^2$
- In these expressions, no dependence on the L<sub>i</sub> at p<sup>4</sup>, only via p<sup>6</sup> contribution. Only 2 LECs C<sub>12</sub> and C<sub>34</sub> which can be determined by the measurement of the slope and the curvature of the scalar form factor.
- $\overline{\Delta}(t)$  and  $\Delta(0)$ : contributions from loops:  $\rightarrow F_{\pi}$ , the LECs  $L_i (L_5 \iff F_K/F_{\pi})$  can be calculated at  $\mathcal{O}(p^6)$  with the knowledge of the  $L_i$  at  $\mathcal{O}(p^4)$  in the physical region.

# 3.1 Computation of K<sub>13</sub> form factors at 2 loops in the isospin limit [Bijnens&Talavera'03]

• The scalar form factor at two loops in the isospin limit

$$f_{S}(t) = f_{+}(0) + \overline{\Delta}(t) + \frac{F_{K}/F_{\pi} - 1}{\Delta_{K\pi}}t + \frac{8}{F_{\pi}^{4}} \Big(2C_{12}^{r} + C_{34}^{r}\Big)\Big(m_{K}^{2} + m_{\pi}^{2}\Big)t - \frac{8}{F_{\pi}^{4}}t^{2}C_{12}^{r}$$

• The vector form factor  $f_+(0)$  at 2 loops in the isospin limit is expressed as  $f_+(0) = 1 + \Delta(0) - \frac{8}{F_\pi^4} (C_{12}^r + C_{34}^r) \Delta_{K\pi}^2$ 

• 
$$\overline{\Delta}(t) = -0.25763t + 0.833045t^2 + 1.25252t^3 \quad \left[K_{13}^0\right]$$
  
 $\Delta(0) = -0.0080 \pm 0.0057 \left[loops\right] \pm 0.0028 \left[L_i^r\right]$ 

 $\implies$  To be updated with the new experimental inputs (K<sub>14</sub>)

### 3.3 Matching

$$f_{S}(t) = f_{+}(0) + \overline{\Delta}(t) + \frac{F_{K}/F_{\pi}-1}{\Delta_{K\pi}}t + \frac{8}{F_{\pi}^{4}} \left(2C_{12}^{r}+C_{34}^{r}\right)\left(m_{K}^{2}+m_{\pi}^{2}\right)t - \frac{8}{F_{\pi}^{4}}t^{2}C_{12}^{r}$$

• Taking the derivative:

$$\lambda_{0}'f_{+}(0) = \frac{m_{\pi}^{2}}{\Delta_{K\pi}} \left(\frac{F_{K}}{F_{\pi}} - 1\right) + \frac{8m_{\pi}^{2}\Sigma_{K\pi}}{F_{\pi}^{4}} \left(2C_{12}' + C_{34}'\right) + m_{\pi}^{2}\overline{\Delta}'(0)$$

And derivate 2 times:

$$\lambda_{0}'' f_{+}(0) = -\frac{16m_{\pi}^{4}}{F_{\pi}^{4}} C_{12}^{r} + m_{\pi}^{4} \overline{\Delta}''(0)$$
 (1)

• Combine with the two loop result for  $f_+(0)$   $\Longrightarrow f_+(0) = 1 + \Delta(0) - \frac{8}{F_\pi^4} \left( C_{12}^r + C_{34}^r \right) \Delta_{K\pi}^2$  (2) • From (1)+(2)  $\Longrightarrow 2C_{12}^r + C_{34}^r$   $\Longrightarrow$   $f_+(0) = f\left(\frac{F_K}{F_\pi}, \lambda_0^r\right)$  $u^4$ 

• From DR 
$$\lambda_0'' = \lambda_0'^2 - 2 \frac{m_\pi}{\Delta_{K\pi}} G'(0)$$
  
=  $\lambda_0'^2 + (4.16 \pm 0.50) \ge 10^{-4}$ 

 $\lambda_{0}^{\prime} = f\left(\frac{F_{K}}{F_{\pi}}, f_{+}(0)\right)$ 

27

- We will present trends and not exact results: use of  $\Delta(0)$  and  $\Delta(t)$  from [Bijnens&Talavera] determined with  $F_K/F_{\pi}$  =1.22 and  $F_{\pi}$  =92.4 MeV
  - Redo the fit varying  $F_{K}/F_{\pi}$  and  $F_{\pi}$ .
- We vary  $\Delta(0)$  in its error bars, give the largest uncertainty.

• For instance, take the most recent and precise value for  $F_K/F_\pi$  from lattice

 $\frac{F_{K}}{F_{\pi}} = 1.189 \pm 0.007$ 

#### [HPQCD-UKQCD'07]

|      | $\lambda_0$      | $f_{+}(0)$  | $C_{12}$   | $C_{34}$      | $\Delta_{CT}$ |
|------|------------------|-------------|------------|---------------|---------------|
|      | $10^{-3}$        |             | $10^{-6}$  | $10^{-6}$     | $10^{-2}$     |
| KLOE | $14.0\pm2.1$     | 0.9700(218) | 0.463(537) | 3.387(4.226)  | 0.028(1.011)  |
| KTeV | $12.95 \pm 1.04$ | 0.9803(127) | 0.720(251) | 1.323(2.233)  | -0.180(933)   |
| NA48 | $8.88 \pm 1.24$  | 1.0212(149) | 1.523(200) | -6.634(2.586) | -0.963(905)   |

- Uncertainties from  $\Delta(0)$ ,  $F_{K}/F_{\pi}$  and  $\lambda_{0}$
- Uncertainties on f<sub>+</sub>(0) between 1.5% and 2%, not competitive with the most recent lattice result (uncertainties of ~ 0.5%)
- Limiting uncertainty from  $\lambda_0$ , average ?
- Uncertainties on  $\Delta(0)$  and  $\overline{\Delta}(t)$  should decrease with new fits.

## **3.4 Standard Model framework**

- Unitarity of  $V_{CKM}$ :  $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- $V_{ud}$  from 0<sup>+</sup> $\rightarrow$ 0<sup>+</sup> superallowed  $\beta$  decays:  $\mathcal{V}_{ud} = 0.97418(26)$

[Towner&Hardy'07]

•  $V_{us}$  from unitarity  $|V_{us}|^2 = 1 - |V_{ud}|^2$ 

 $\implies$  F<sub>K</sub>/F<sub> $\pi$ </sub>, f<sub>+</sub>(0) are known from experiments.

• From  $\Gamma(\pi \to \mu \nu(\gamma)) \sim |F_{\pi}V^{ud}|$   $\implies$   $\hat{F}_{\pi} = (92.1 \pm 0.2) \text{ MeV}$ • From  $\frac{\Gamma(K \to \mu \nu(\gamma))}{\Gamma(\pi \to \mu \nu(\gamma))} \sim \left|\frac{F_{K}V^{us}}{F_{\pi}V^{ud}}\right|$   $\implies$   $\frac{\hat{F}_{K}}{\hat{F}_{\pi}} = 1.192 \pm 0.007$ • From  $\Gamma(K^{0} \to \pi^{+}e^{-}\nu) \sim |f_{+}(0)V^{us}|$   $\implies$   $\hat{f}_{+}(0) = 0.9574 \pm 0.0052$ 

| $\Delta(0)$ | $F_K/F_{\pi}$ | $f_{+}(0)$ | $\lambda'_0$ | $C_{12}$    | $C_{34}$    | $\Delta_{CT}$ |
|-------------|---------------|------------|--------------|-------------|-------------|---------------|
|             |               |            | $(10^{-3})$  | $(10^{-6})$ | $(10^{-6})$ | $(10^{-2})$   |
| -0.0165     | 1.192         | 0.957      | 14.46        | -0.170      | 4.741       | -1.193        |
| -0.008      | 1.192         | 0.957      | 15.20        | -0.421      | 6.480       | -0.118        |
| 0.0005      | 1.192         | 0.957      | 15.93        | -0.683      | 8.229       | 0.948         |

- $F_K/F_\pi$  and  $f_+(0)$  in agreement with the lattice results: on the lower side of the lattice results for  $F_K/F_{\pi}$ .
- $f_+(0) = 0.961(8)$  [Leutwyler&Roos]
- $f_+(0) = 0.984(12)$  [Cirigliano et al]

#### Lattice Results



#### Lattice Results



| $\Delta(0)$ | $F_K/F_{\pi}$ | $f_{+}(0)$ | $\lambda'_0$ | $C_{12}$    | $C_{34}$    | $\Delta_{CT}$ |
|-------------|---------------|------------|--------------|-------------|-------------|---------------|
|             |               |            | $(10^{-3})$  | $(10^{-6})$ | $(10^{-6})$ | $(10^{-2})$   |
| -0.0165     | 1.192         | 0.957      | 14.46        | -0.170      | 4.741       | -1.193        |
| -0.008      | 1.192         | 0.957      | 15.20        | -0.421      | 6.480       | -0.118        |
| 0.0005      | 1.192         | 0.957      | 15.93        | -0.683      | 8.229       | 0.948         |

- $f_+(0)$  in agreement with  $f_+(0) = 0.961(8)$  [Leutwyler&Roos'84]
- In desagreement with  $f_+(0) = 0.984(12)$  [Cirigliano et al], recently updated by [Kastner&Neufeld'08]

$$\Rightarrow f_+(0) = 0.986 \pm 0.007_{1/N_c} \pm 0.002_{M_s, M_p}$$

due to a difference in the value  $C_{34}$ 

| $\Delta(0)$ | $F_K/F_{\pi}$ | $f_{+}(0)$ | $\lambda'_0$ | $C_{12}$    | $C_{34}$    | $\Delta_{CT}$ |
|-------------|---------------|------------|--------------|-------------|-------------|---------------|
|             |               |            | $(10^{-3})$  | $(10^{-6})$ | $(10^{-6})$ | $(10^{-2})$   |
| -0.0165     | 1.192         | 0.957      | 14.46        | -0.170      | 4.741       | -1.193        |
| -0.008      | 1.192         | 0.957      | 15.20        | -0.421      | 6.480       | -0.118        |
| 0.0005      | 1.192         | 0.957      | 15.93        | -0.683      | 8.229       | 0.948         |

- RChPT models:  $C_{12} \sim -1 \times 10^{-5}$  for  $M_s \sim 980 \text{MeV}(a_0)$ For  $1 \text{GeV} \le M_s \le 1.5 \text{GeV} \longrightarrow -9 \ 10^{-6} \le C_{12} \le -1.8 \ 10^{-6}$   $\left(C_{12}^{SP} = -\frac{F_{\pi}^4}{8M_s^2}\right)$ Evolving to the  $\rho$  scale  $-7.8 \ 10^{-6} \le C_{12} \le 4 \ 10^{-6}$
- $C_{12}=(0.3\pm5.4)\times10^{-7}$ ,  $\lambda'_0=0.0157(1)$  with c.v.  $f_+(0)=0.976$  [Jamin, Oller & Pich]  $\lambda'_0=0.0147(4)$  with  $f_+(0)=0.972(12)$  and  $F_K/F_{\pi}=1.203(16)$
- RChPT models:  $C_{34} \sim 6 \times 10^{-5} \implies C_{34}(M_{\rho}) \sim (2.9^{+1.3}_{-5.0}) \times 10^{-6}$ in desagreement at  $2\sigma$  [Kastner&Neufeld'08]
- $\lambda'_0$  on the large side of experimental results

| $\Delta(0)$ | $F_K/F_{\pi}$ | $f_{+}(0)$ | $\lambda'_0$ | $C_{12}$    | $C_{34}$    | $\Delta_{CT}$ |
|-------------|---------------|------------|--------------|-------------|-------------|---------------|
|             |               |            | $(10^{-3})$  | $(10^{-6})$ | $(10^{-6})$ | $(10^{-2})$   |
| -0.0165     | 1.192         | 0.957      | 14.46        | -0.170      | 4.741       | -1.193        |
| -0.008      | 1.192         | 0.957      | 15.20        | -0.421      | 6.480       | -0.118        |
| 0.0005      | 1.192         | 0.957      | 15.93        | -0.683      | 8.229       | 0.948         |

• Small value of  $\Delta_{CT}$  in agreement with the NLO result  $\Delta_{CT}^{NLO} = (-3.5 \pm 8) \times 10^{-3}$ One recovers  $\Delta_{CT}^{loops} = -6.2 \times 10^{-3}$  [Bijnens&Ghorbani'07]

Rather large variations of C<sub>i</sub> Δ<sub>CT</sub> and λ<sub>0</sub> with Δ(0)
 large uncertainties

## 3.5 Matching in presence of RHCs

• Change in the values of  $F_K/F_{\pi}$  and  $f_{+}(0)$  compared to the SM, apparition of  $V_L$  and  $V_R \implies \mathcal{V}_{eff}$  and  $\mathcal{A}_{eff}$ 

$$\left(\frac{F_{K}}{F_{\pi}}\right)^{2} = \left(\frac{\widehat{F}_{K}}{\widehat{F}_{\pi}}\right)^{2} \frac{1 + 2\left(\varepsilon_{S} - \varepsilon_{NS}\right)}{1 + \frac{2}{\sin^{2}\widehat{\theta}}\left(\delta + \varepsilon_{NS}\right)} \quad \text{and} \quad \left[f_{+}^{K^{0}\pi^{-}}(0)\right]^{2} = \left[\widehat{f}_{+}^{K^{0}\pi^{-}}(0)\right]^{2} \frac{1 - 2\left(\varepsilon_{S} - \varepsilon_{NS}\right)}{1 + \frac{2}{\sin^{2}\widehat{\theta}}\left(\delta + \varepsilon_{NS}\right)}$$

with  $(\delta + \epsilon_{NS})$  and  $(\epsilon_{S} - \epsilon_{NS})$ , combination of new physics parameters.

Use experimental knowledge of λ<sub>0</sub> and Δε obtained from dispersive fits to determine F<sub>K</sub>/F<sub>π</sub>, f<sub>+</sub>(0), C<sub>12</sub>, C<sub>34</sub>, Δ<sub>CT</sub>

$$\ln C = 0.2188(35) + 2(\varepsilon_{s} - \varepsilon_{NS}) + \Delta_{CT} / B_{exp}$$

$$\Delta \varepsilon$$

KLOE compatible with lattice results + no RHCs NA48, RHCs + small  $F_{K}/F_{\pi}$  ( $F_{K}/F_{\pi} \sim 1.15$ )

## 4. Conclusion and outlook

- Dispersive parametrization very useful to analyse K<sup>L</sup><sub>µ3</sub> decays: parametrization physically motivated which allows with one parameter to determine the shape of the form factor, quite robust
  - Allows for a test of the SM electroweak couplings via the CT theorem
  - Allows for a matching with the 2 loop ChPT calculation
- Experimental results from dispersive analysis: KLOE and KTeV agree with the SM and NA48 at 4.5σ results for K<sup>+</sup>
- Matching the K<sub>I3</sub> two loop computation + experimental results using dispersive representation offer the opportunity to determine f<sub>+</sub>(0), C<sub>12</sub>, C<sub>34</sub>,  $\Delta_{CT}$  as a function of F<sub>K</sub>/F<sub> $\pi$ </sub>
- Uncertainties too large at the moment to extract these quantities, need of
  - more precise and consistent fits
  - more precise lattice determinations
  - more precise scalar form factor measurements

## 4. Conclusion and outlook

- Dispersive parametrization very useful to analyse K<sup>L</sup><sub>µ3</sub> decays: parametrization physically motivated which allows with one parameter to determine the shape of the form factor, quite robust
  - Allows for a test of the SM electroweak couplings via the CT theorem
  - Allows for a matching with the 2 loop ChPT calculation
- Matching the K<sub>I3</sub> two loop computation + experimental results using dispersive representation offer the opportunity to determine f<sub>+</sub>(0), C<sub>12</sub>, C<sub>34</sub>,  $\Delta_{CT}$  as a function of F<sub>K</sub>/F<sub> $\pi$ </sub>
- Uncertainties too large at the moment to extract these quantities, need of
  - more precise and consistent fits
  - more precise lattice determinations
  - more precise scalar form factor measurements
- Outlook: -systematic study of uncertainties

-consistent matching.

- include IB

## **Aditional Slides**

- NA48 result is new physics
- The other way round, take the most precise and recent value from lattice for  $F_{K}/F_{\pi}$  and f+(0)

$$\frac{F_K}{F_{\pi}} = 1.189 \pm 0.007$$
 [HPQCD-UKQCD'07]

 $f_+(0) = 0.964 \pm 0.005$  [RBC-UKQCD'07]

$$\implies \lambda_0' = (14.62 \pm 1.07) x 10^{-3}$$

• Compatible with the result from the dispersive analysis with  $\ln C_{SM}$  $\lambda_0' = (15.04 \pm 0.73) \times 10^{-3}$ 

and with the prediction  $\lambda'_0=0.0147(4)$  [Jamin, Oller&Pich]

### 3.5 Matching in presence of RHCs

• Change in the values of  $F_K/F_\pi$  and  $f_+(0)$  compared to the SM, apparition of  $V_L$  and  $V_R \implies \mathcal{V}_{eff}$  and  $\mathcal{A}_{eff}$ 

$$\left(\frac{F_{K}}{F_{\pi}}\right)^{2} = \left(\frac{\widehat{F}_{K}}{\widehat{F}_{\pi}}\right)^{2} \frac{1 + 2\left(\varepsilon_{s} - \varepsilon_{Ns}\right)}{1 + \frac{2}{\sin^{2}\widehat{\theta}}\left(\delta + \varepsilon_{Ns}\right)} \quad \text{and} \quad \left[f_{+}^{K^{0}\pi^{-}}(0)\right]^{2} = \left[\widehat{f}_{+}^{K^{0}\pi^{-}}(0)\right]^{2} \frac{1 - 2\left(\varepsilon_{s} - \varepsilon_{Ns}\right)}{1 + \frac{2}{\sin^{2}\widehat{\theta}}\left(\delta + \varepsilon_{Ns}\right)}$$

with  $(\delta + \varepsilon_{NS})$  and  $(\varepsilon_{S} - \varepsilon_{NS})$ , combination of new physics parameters.  $\left| \mathcal{V}_{eff}^{ud} \right|^{2} + \left| \mathcal{V}_{eff}^{us} \right|^{2} = 1 + \Delta_{unitarity} = 1 + 2(\delta + \varepsilon_{NS}) + 2(\varepsilon_{S} - \varepsilon_{NS}) \sin^{2} \hat{\theta}$  $\Delta_{unitarity} = \sin^{2} \hat{\theta} \left( \left| \frac{\hat{f}_{+}^{K^{0}\pi^{-}}(0)}{f_{+}^{K^{0}\pi^{-}}(0)} \right|^{2} - 1 \right) \longrightarrow \Delta_{unitarity} \text{ small}$ 

• Use experimental knowledge of  $\lambda_0$  and  $\Delta \varepsilon$  obtained with dispersive fits to determine  $F_K/F_{\pi,}f_+(0)$ ,  $C_{12}$ ,  $C_{34}$ ,  $\Delta_{CT}$   $\longrightarrow$  KLOE compatible with  $\ln C = 0.2188(35) + 2(\varepsilon_s - \varepsilon_{NS}) + \Delta_{CT} / B_{exp}$  and NA48, RHCs + small  $\Delta \varepsilon$   $F_K/F_{\pi} (F_K/F_{\pi} \sim 1.15)$ 

# Breaking of $\Delta_{\text{unitarity}}$ and $\varepsilon_{\text{S}}$ - $\varepsilon_{\text{NS}}$ =0

| $\Delta(0)$ | $\epsilon_s-\epsilon_{ns}$ | $\Delta_{\text{unitarity}}$ | $\lambda'_0$ | $\Delta_{CT}$ | $f_{+}(0)$ | $F_K/F_{\pi}$ | $C_{12}$    | $C_{34}$    |
|-------------|----------------------------|-----------------------------|--------------|---------------|------------|---------------|-------------|-------------|
|             |                            | $(10^{-3})$                 | $(10^{-3})$  | $(10^{-2})$   |            |               | $(10^{-6})$ | $(10^{-6})$ |
| -0.0165     | SM                         | SM                          | 14.46        | -1.193        | 0.957 *    | 1.192 *       | -0.170      | 4.741       |
|             | 0                          | -1.5                        | 14.30        | -1.428        | 0.972      | 1.210         | -0.235      | 2.235       |
| -0.008      | SM                         | SM                          | 15.20        | -0.118        | 0.957 *    | 1.192 *       | -0.421      | 6.480       |
|             | 0                          | -1.5                        | 15.03        | -0.368        | 0.972      | 1.210         | -0.484      | 3.971       |
|             | 0                          | -3.1                        | 14.85        | -0.622        | 0.987      | 1.229         | -0.550      | 1.344       |
|             | 0                          | 1.5                         | 15.37        | 0.127         | 0.943      | 1.174         | -0.362      | 8.879       |
|             | 0                          | 3.1                         | 15.53        | 0.369         | 0.930      | 1.157         | -0.306      | 11.176      |
| 0.0005      | SM                         | SM                          | 15.93        | 0.948         | 0.957 *    | 1.192 *       | -0.683      | 8.229       |
|             | 0                          | -1.5                        | 15.75        | 0.684         | 0.972      | 1.210         | -0.743      | 5.718       |

When  $\Delta_{unitarity}$  increases,  $\lambda_0$ ,  $\Delta_{CT}$ ,  $C_{12}$  and  $F_K/F_{\pi}$  decrease whereas  $C_{34}$  and  $f_{+}(0)$  increase.

$$\Delta_{\text{unitarity}} = \sin^2 \hat{\theta} \left( \left| \frac{\hat{f}_{+}^{K^0 \pi^-}(\mathbf{0})}{f_{+}^{K^0 \pi^-}(\mathbf{0})} \right|^2 - 1 \right)$$

Lattice variation for  $\Delta_{unitarity}$  $0.0148 \le \lambda_0 \le 0.0154$ 

- 3) Allow for physics beyond the SM: use experimental knowledge of  $\lambda_0$ and  $\Delta \varepsilon$  obtained with dispersive fit.  $\ln C = 0.2188(35) + 2(\varepsilon_s - \varepsilon_{NS}) + \Delta_{CT} / B_{exp}$
- NA48  $\lambda_0 = (8.88 \pm 1.24) \times 10^{-3}$  and  $\Delta \varepsilon = -0.0075(14)$  [Phys.Letter. B.647]
- KLOE  $\lambda_0 = (14.0 \pm 2.10) \times 10^{-3}$  and  $\Delta \varepsilon = -0.0015(25)$  [JHEP'08]

| $\Delta(0)$ | $\epsilon_s - \epsilon_{ns}$ | $\lambda_0$ | $\Delta_{\text{unitarity}}$ | $\Delta_{CT}$ | $f_{+}(0)$ | $F_K/F_{\pi}$ | $C_{12}$    | $C_{34}$    |
|-------------|------------------------------|-------------|-----------------------------|---------------|------------|---------------|-------------|-------------|
|             |                              | $(10^{-3})$ | $(10^{-3})$                 | $(10^{-2})$   |            |               | $(10^{-6})$ | $(10^{-6})$ |
| -0.008      | -0.005                       | 14.0        | -2.80                       | -0.623        | 0.984      | 1.213         | -0.234      | 1.534       |
|             | -0.032                       | 9.01        | -3.148                      | -1.178        | 0.987      | 1.152         | 1.107       | -2.158      |
| -0.0165     | -0.0012                      | 13.99       | -2.41                       | -1.579        | 0.980      | 1.218         | -0.202      | 0.666       |
|             | -0.028                       | 9.00        | -2.760                      | -2.130        | 0.983      | 1.157         | 1.132       | -1.092      |
| 0.0005      | -0.0088                      | 14.0        | -3.19                       | 0.325         | 0.988      | 1.209         | -0.264      | 2.400       |
|             | -0.0358                      | 9.01        | -3.535                      | -0.234        | 0.991      | 1.148         | 1.084       | 0.659       |

- 3) Allow for physics beyond the SM: use experimental knowledge of  $\lambda_0$  and  $\Delta\epsilon$
- NA48  $\lambda_0 = (8.88 \pm 1.24) \times 10^{-3}$  and  $\Delta \varepsilon = -0.0075(14)$  [Phys.Letter. B.647]

| $\Delta(0)$ | $\epsilon_s-\epsilon_{ns}$ | $\lambda_0$ | $\Delta_{\text{unitarity}}$ | $\Delta_{CT}$ | $f_{+}(0)$ | $F_K/F_{\pi}$ | $C_{12}$    | $C_{34}$    |
|-------------|----------------------------|-------------|-----------------------------|---------------|------------|---------------|-------------|-------------|
|             |                            | $(10^{-3})$ | $(10^{-3})$                 | $(10^{-2})$   |            |               | $(10^{-6})$ | $(10^{-6})$ |
| -0.008      | -0.005                     | 14.0        | -2.80                       | -0.623        | 0.984      | 1.213         | -0.234      | 1.534       |
|             | -0.032                     | 9.01        | -3.148                      | -1.178        | 0.987      | 1.152         | 1.107       | -2.158      |
| -0.0165     | -0.0012                    | 13.99       | -2.41                       | -1.579        | 0.980      | 1.218         | -0.202      | 0.666       |
|             | -0.028                     | 9.00        | -2.760                      | -2.130        | 0.983      | 1.157         | 1.132       | -1.092      |
| 0.0005      | -0.0088                    | 14.0        | -3.19                       | 0.325         | 0.988      | 1.209         | -0.264      | 2.400       |
|             | -0.0358                    | 9.01        | -3.535                      | -0.234        | 0.991      | 1.148         | 1.084       | 0.659       |

- $F_{K}/F_{\pi}$  rather small
- Large contribution from RHCs
- $\Delta_{CT}$  on the large side of the NLO result,
- C<sub>34</sub> becomes negative, C<sub>12</sub> is positive.

3) Allow for physics beyond the SM: use experimental knowledge of  $\lambda_0$  and  $\Delta\epsilon$ 

| • | KLOE $\lambda_{0}$ | $_{0} = (14.0 \pm 2.10) \times 10^{-3}$ | and | $\Delta \varepsilon = -0.0015$ |
|---|--------------------|-----------------------------------------|-----|--------------------------------|
|---|--------------------|-----------------------------------------|-----|--------------------------------|

[JHEP'08]

| $\Delta(0)$ | $\epsilon_s - \epsilon_{ns}$ | $\lambda_0$ | $\Delta_{\text{unitarity}}$ | $\Delta_{CT}$ | $f_{+}(0)$ | $F_K/F_{\pi}$ | $C_{12}$    | $C_{34}$    |
|-------------|------------------------------|-------------|-----------------------------|---------------|------------|---------------|-------------|-------------|
|             |                              | $(10^{-3})$ | $(10^{-3})$                 | $(10^{-2})$   |            |               | $(10^{-6})$ | $(10^{-6})$ |
| -0.008      | -0.005                       | 14.0        | -2.80                       | -0.623        | 0.984      | 1.213         | -0.234      | 1.534       |
|             | -0.032                       | 9.01        | -3.148                      | -1.178        | 0.987      | 1.152         | 1.107       | -2.158      |
| -0.0165     | -0.0012                      | 13.99       | -2.41                       | -1.579        | 0.980      | 1.218         | -0.202      | 0.666       |
|             | -0.028                       | 9.00        | -2.760                      | -2.130        | 0.983      | 1.157         | 1.132       | -1.092      |
| 0.0005      | -0.0088                      | 14.0        | -3.19                       | 0.325         | 0.988      | 1.209         | -0.264      | 2.400       |
|             | -0.0358                      | 9.01        | -3.535                      | -0.234        | 0.991      | 1.148         | 1.084       | 0.659       |

• Results for  $F_K/F_{\pi}$  and  $f_+(0)$  compatible with lattice results, small RHCs for the central value.

# 1.3 Callan-Treiman relation: test of EW couplings of the SM

• Callan-Treiman Theorem: SU(2) x SU(2) theorem

$$\Delta_{K\pi} = m_{K}^{2} - m_{\pi}^{2}$$

$$C = \overline{f_{0}}(\Delta_{K\pi}) = \frac{F_{K}}{F_{\pi}f_{+}^{K^{0}}(0)} + \Delta_{CT} \quad \Delta_{CT} \text{ estimated in ChPT } \sim \mathcal{O}(m_{u,d} / 4\pi F_{\pi})$$

$$\Delta_{K\pi} = m_{K}^{2} - m_{\pi}^{2} \quad B \quad \Delta_{CT}^{NLO} = (-3.5 \pm 8).10^{-3} \quad \text{[Gasser&Leutwyler]}$$

Test of the SM EW couplings

$$B = \frac{F_{K} |\mathcal{V}^{us}|}{F_{\pi} |\mathcal{V}^{ud}|} \frac{1}{f_{+}(0) |\mathcal{V}^{us}|} |\mathcal{V}^{ud}|$$

is predicted in the Standard Model using

the measured Br:  $\frac{\text{Br}(\text{K}_{l2}/\pi_{l2})}{\text{prediction.}}$ ,  $\frac{\Gamma(\text{K}_{e3})}{\Gamma(\text{K}_{e3})}$  and  $|\mathcal{V}_{ud}|$ . ( $|\mathcal{V}_{us}|$  not needed in this prediction.)

$$\implies B = 1.2439 \pm 0.0042$$
  $\ln C_{SM} = 0.2183(34) + \Delta_{CT}$ 

## 2.1 Why a dispersive parametrization ?

- Use of the physical knowledge :
  - > K $\pi$  scattering phase.
  - Presence of resonances....
- 2 subtractions insensitive to the unknown high energy phase. This allows for a good precision in the region of interest (at low energy).
- Only one free parameter to be fitted.

# 3.2 Dispersive representation of the scalar $K\pi$ form factor

• From the dispersive parametrization of the scalar form factor

$$\overline{f}_0(t) = \exp\left[\frac{t}{\Delta_{K\pi}} (\ln C - G(t))\right] \implies \text{Slope and curvature}$$

$$\lambda'_{0} = \frac{m_{\pi}^{2}}{\Delta_{K\pi}} \left( \ln C - G(0) \right)$$

G(0) = 0.0398(40)

and

$$\lambda_0'' = \lambda_0'^2 - 2 \frac{m_\pi^4}{\Delta_{K\pi}} G'(0)$$
$$= \lambda_0'^2 + (4.16 \pm 0.50) \times 10^{-4}$$

## 2.3 Description

$$\overline{f}_0(t) = \exp\left[\frac{t}{\Delta_{K\pi}} (\ln C - G(t))\right] \quad \text{with} \quad G(t) = \frac{\Delta_{K\pi}(\Delta_{K\pi} - t)}{\pi} \int_{t_{\pi K}}^{\infty} \frac{ds}{s} \frac{\phi(s)}{(s - \Delta_{K\pi})(s - t)}$$

 $\rightarrow \phi(t)$  phase of form factor :  $\overline{f}(t) = \left|\overline{f}(t)\right| e^{i\phi(t)}$ 

- Two unknowns:  $\phi(s)$  and  $\ln C = \ln(\overline{f}_0(t=\Delta_{K\pi}))$
- $\phi(s)$  a priori unknown but
  - →  $\overline{f}_0(s)^s \stackrel{*}{=} \overset{*}{\mathcal{O}}(1/s)$  → For large s,  $\phi(s) \rightarrow \pi$ . Rapid convergence of G(t).
  - → At « low energy »  $\phi(s) = \delta_{K_{\pi}}^{\frac{1}{2}}(s)$ , S wave I=1/2 K $\pi$  scattering phase, [Watson theorem] well known : [Buettiker, Descotes, Moussallam '02]
    - > Experimental inputs for 1 GeV < E < 2.5 GeV [Aston et al].
    - Extrapolation of the phase down to threshold solving the Roy Steiner equations.

#### **General Case**

• Knowing  $\lambda'_0$ ,  $\lambda''_0$  +  $F_K/F_\pi$  allows to determine  $f_+(0)$ 

$$f_{+}(0) = \frac{\frac{m_{\pi}^{2}}{\Delta_{K\pi}} (F_{K}/F_{\pi}-1) + \frac{m_{\pi}^{2} \Sigma_{K\pi}}{\Delta_{K\pi}} (1+\Delta(0)) + m_{\pi}^{2} \overline{\Delta}'(0) + \frac{m_{\pi}^{2} \Sigma_{K\pi}}{2} \overline{\Delta}''(0)}{\frac{m_{\pi}^{2} \Sigma_{K\pi}}{\Delta_{K\pi}^{2}} + \lambda_{0}' + \frac{\Sigma_{K\pi}}{2} \lambda_{0}''}$$

• Once  $f_{+}(0)$  is known  $\implies$   $C_{12}$ ,  $C_{34}$ ,  $\Delta_{CT}$ 

$$\Delta_{CT} = \exp\left[\frac{\Delta_{K\pi}}{m_{\pi}^2}\lambda_0' + G(0)\right] - \frac{F_K}{F_{\pi}}\frac{1}{f_+(0)}$$

#### **General Case**

- Or equivalently, knowing  $F_{K}/F_{\pi}$  and  $f_{+}(0)$  allows te determine  $\lambda_{0}$ 
  - Use of the dispersive parametrization

$$\lambda_{0}^{''} = \lambda_{0}^{'2} - 2 \frac{m_{\pi}^{4}}{\Delta_{K\pi}} G'(0)$$
$$= \lambda_{0}^{'2} + (4.16 \pm 0.50) \times 10^{-4}$$

$$\lambda_{0}' = -\frac{m_{\pi}^{2}}{\Sigma_{K\pi}} \left( 1 - \sqrt{1 - 2\frac{\Sigma_{K\pi}^{2}}{\Delta_{K\pi}} \left(\frac{Y}{\Delta_{K\pi}} - G'(0)\right)} \right)$$
 with

$$Y = 1 - \frac{\Delta_{K\pi}}{\Sigma_{K\pi}} \frac{F_K}{F_{\pi}} \frac{1}{f_+(0)} - \frac{1}{f_+(0)} \left( 1 + \Delta(0) + \frac{\Delta_{K\pi}^2}{2} \overline{\Delta}''(0) - \frac{\Delta_{K\pi}}{\Sigma_{K\pi}} \left( 1 - \Delta_{K\pi} \overline{\Delta}'(0) \right) \right)$$