Beta from Penguins: Theoretical Aspects

Amarjit Soni (<u>soni@bnl.gov,adlersoni@gmail.com</u>) CKM08, Rome

Outline

- Introduction: Recapitulate + Exptal status
- Two (and not one) stab at the SM
- Some clean modes
- Interesting correlation(s)
- Possibility of independent verification(s)
- Future prospects
- Summary

From Masashi Hazumi

β/ϕ_1 with penguins

 $S_{\psi Ks} \, vs \, \, S_{\delta Ks}$

Time dependent(S) versus dir CP(A)

$$\frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)} = S_f \sin(\Delta m t) + \mathcal{A}_f \cos(\Delta m t),$$

$$r_{f} = \frac{\lambda_{u} A^{u}_{f}}{\lambda_{c} A^{c}_{f}}$$

$$\sim \frac{A^{u}_{f}}{A^{c}_{f}} \frac{1}{50}$$

$$\begin{split} M(\overline{B}^{0} \to f) &= \lambda_{u}^{(s)} A_{f}^{u} + \lambda_{c}^{(s)} A_{f}^{c}, \\ \Delta S_{f} &= 2|r_{f}| \cos 2\beta \sin \gamma \cos \delta_{f}, \quad \left\{ \delta_{f} &\equiv ag \left(A_{f}^{\prime} / A_{f}^{\prime} \right) \right\} \\ \mathcal{A}_{f} &= 2|r_{f}| \sin \gamma \sin \delta_{f}, \\ \mathcal{A}_{f} &= 2|r_{f}| \sin \gamma \sin \delta_{f}, \\ \mathcal{C} \mathsf{KM08}(\mathsf{ROMA}):\mathsf{sept.9-13} (\mathsf{soni}) \\ \end{split}$$

Just to serve as a reminder

∆S results before ICHEP 2008

For most modes, $\Delta S(SM)$ is positive.

Paoti Chang (ICHEP08)

 ϕK^0 : sin2 β_{eff} = +0.12 ± 0.31(stat) ± 0.10 (syst)

CKM08(ROMA) η'K⁰: sin2φ_{1eff}: +0.64± 0.10 ± 0.04

Just to serve as a reminder

TCPV Results on $\overline{b} \rightarrow s qq$

Sorry official HFAG average is not ready yet! S(ccs) = 0.67± 0.02

Naïve

 $C = -0.04 \pm 0.03$

Average

S(qqs) = 0.60± 0.05 after removing BaBar's $f_0(\pi\pi)K^0$ and $\phi K^0\pi^0$ CKM08(ROMA):sept.9-13 (soni)

PaotiChang(ICHEP08)

Theoretical Expectations for ΔS_{w}

$$\begin{array}{c} & Berne Ke' 05 & Cheng, Chua+A5' b5 \\ 1. & \gamma' K_{3} & 0 \gamma^{+ \cdot 01} & [+ \cdot 00, \cdot 03] & \cdot 00 \xrightarrow{+ \cdot 00} \\ - & 01 & [+ \cdot 01, \cdot 05] & \cdot 00 \xrightarrow{+ \cdot 01} \\ 2. & \varphi K_{3} & \cdot 02 \xrightarrow{+ \cdot 01} & [+ \cdot 01, \cdot 05] & \cdot 03 \xrightarrow{+ \cdot 01} \\ 3. & TT^{0} K_{3} & \cdot 07 \xrightarrow{+ \cdot 05} & [\cdot 02, \cdot 15] & \cdot 04 \\ 3. & TT^{0} K_{3} & \cdot 07 \xrightarrow{+ \cdot 05} & [\cdot 02, \cdot 15] & \cdot 04 \\ 4. & \gamma K_{5} & \cdot 10 \xrightarrow{+ \cdot 11} & [-1 \cdot 67, \cdot 27] & \cdot 07 \\ 5. & g^{0} K_{5} & - \cdot 08 \xrightarrow{+ \cdot 08} & [- \cdot 29, \cdot 02] & \cdot 04 \\ 5. & W K_{5} & \cdot 13 \xrightarrow{+ \cdot 08} & [- 01, \cdot 21] & \cdot 01 \\ \end{array}$$

Browder, Gershon, Pirjol, AS, Zupan, arXiv:0802.3201 (RMP)

Model	ϕK^0	$\eta' K^0$	$K_S K_S K^0$	
$\rm QCDF+FSI^a$	$0.03\substack{+0.01\\-0.04}$	$0.00^{+0.00}_{-0.04}$	$0.02^{+0.00}_{-0.04}$	
$\rm QCDF^b$	0.02 ± 0.01	0.01 ± 0.01		
$\rm QCDF^c$	0.02 ± 0.01	0.01 ± 0.02		
$\mathrm{SCET}^{\mathrm{d}}$		-0.019 ± 0.009		
		-0.010 ± 0.010		
$pQCD^{e}$	0.02 ± 0.01			
^a Cheng <i>et al.</i> (2005a,b) ^b Beneke (2005)				
^c Buchalla <i>et al.</i> (2005)		$^{\rm d} \rm Williamson$ and $\rm Z$	Zupan~(2006)	
^e Li and Mishima (2006)				

TABLE VIII Expectations for ΔS_f in three cleanest modes.

Mode of special interest:
$$\pi^{0}Ks$$

Beneke
Cheng, Chua, AS
Buchalla, Hilla, NiR, AAZ
DABAR $\Delta S \sim -12\pm 20$
BELLE
 $\Delta S_{\Pi^{0}K_{S}}$
 $07\pm 05 (02, 15)$
 04 ± 02
 $052 \cdot 042$
 -031
See faoti Changtalk
ICHEROS

More on π^0 Ks

- However, Isospin povides useful relations amongs the 4 K π modes which may lead to useful constraints
- An interesting exampleFleischer,Jager,Pijol,Zupan,arXiv: 0806.2900

 $S_{\pi^{0}K_{S}} = 0.99^{+0.01}_{-0.07}|_{\exp. -0.001}|_{R_{T+C} -0.10}|_{R_{q} -0.06}|_{\gamma}$ See also Gronart Rosper anti V:0807.3080 CKM08(ROMA):sept.9-13 (soni)

Giri, Mohanta, AS (WIP)

TDCP studies in b->s penguins: two crucial messages NOT one

- Focus has been just on comparison with B->ψ Ks
- In fact at least equally important and most likely, much more important, is that the central value of sin2^β from penguins is a lot less than the SM prediction (~0.78 +-0.04 with Vub=(40.8+-3.0)X10⁻⁴
- (~0.75+-0.04) with Vub=(37.8+-5.0)X10⁻⁴
- (0.87+-0.09) NO Vub; thanks to improved determination of Bk (RBC-UKQCD) see Lunghi+AS arXiv:0803.4340
- Ignoring this 2nd point for last ~3 years has been a costly omission for the flavor community, adversely affecting its exptal program

1 1

See Lunghi's talk Thurs Special session

Lunghi+AS,arXiv.0707.0212 (Sin 2 β = 0.78+-.04)

Figure 1: Unitarity triangle fit in the SM. The constraints from $|V_{ub}/V_{cb}|$, ε_K , $\Delta M_{B_s}/\Delta M_{B_d}$ are included in the fit; the region allowed by $a_{\psi K}$ is superimposed.

Leave out Vub sin 2 β = 0.87+-.09{Lunghi+AS,hep-ph/08034340} (became possible only due significantly reduced error in B_K)

allowed by $a_{\psi K}$ and $a_{(\phi+\eta'+2K_s)K_s}$ are superimposed.

2.1-2.7 σ - deviation from the directly measured values of sin 2 β require careful follow-up

Values of sin2β

- SM prediction (using Vub) ~0.765+-0.04
- SM prediction (No Vub))~0.87 +-0.09
- B->ψ K_s-> 0.681+-0.025
- B->{φ K_s, η K_s, 3 K_s} -> 0.58+-0.06
- ΔS ranges ~1.4 to 2.7 σ
- Besides central values of practically all penguin modes tends to be below ψ K_S (and of course well below SM predictions)

Some More on ΔS

- ΔS REMAINS an EXCELLENT TEST
- Sign of ΔS theoretically NOT fully reliable though in most model calculations and for most modes ΔS is positive
- CONCLUSIVE evidence for NP demands
 |ΔS| >0.10 IN some of the CLEAN modes
 (though whichever |ΔS|)

Possibility of independent verfications

Hints of NP in penguin modes-> **BSM CP-odd phase in b->s transitions Confirmation may come from:** A) (e.g.) AFB (B->K*II) deviation from SM B) Significant SCP in $B_S \rightarrow \psi \phi$ **C)** Lattice confirmation that SM prediction is Significantly different from direct measurements via B->ψ K_s and/or B->δ K_s **Prospects seem very high of resolution in 1-3** years

Anomalous $A_{FB}(q^2)$ in $B \rightarrow K^{(*)} \parallel ?$

Far Future Prospects

Sensitivity to new CP phases

Estimated error in the measurement of time dependent CP violation

Discovery region with 50 ab-1

Browder,Gershon,Pirjol,AS,Zupan,arXiv:0802.3201(RMP) Super Flavor Factory Prospects ~50-75/ab

	SFF	NDW
$S(\phi K^0)$	0.02 - 0.03	0.17
$S(\eta' K^0)$	0.01 – 0.02	0.07
$S(K_SK_SK^0)$	0.02 - 0.03	0.20

Browder,Ciuchini,Gershon,Hzumi,Hurth,Okada,Stocchi,arXiv:0710.3799 SFF Prospects

Fig. 1: Simulation of new physics effects in $B^0 \to \phi K^0$, as could be observed by a SFF. The open circles show simulated $B^0 \to J/\psi K^0$ events, the filled circles show simulated $B^0 \to \phi K^0$ events. Both have curves showing fit results superimposed. From [6].

Prospects at LHCb

One may consider the potential of a hadronic machine to address these modes. At present, it appears that ϕK_S is difficult, but not impossible to trigger and reconstruct in the hadronic environment, due to the small opening angle in $\phi \to K^+K^-$; $\eta'K_S$ is challenging since neutral particles are involved in the η' decay chain; for $K_SK_SK_S$ meanwhile, there are no charged tracks originating from the *B* vertex, and so both triggering and reconstruction seem highly complicated. Modes containing K_L mesons in the final state may be considered impossible to study at a hadron machine. Furthermore, due to the theoretical

Browder, Gershon, Pirjol, AS, Zupan, arXiv:0802.3201 (RMP)

Summary & Conclusions

- Sin 2β from penguins continues to be a very good test of the SM; in particular
- B->{ ϕ K_s, η K_s, 3 K_s} appear rather clean
- B-> π^0 K_s may also emerge as a viable constraint
- For now data is suggestive of a new phase in b->s penguin transitions
- Independent verification may come from (in 1-3 years):
- (e.g) AFB (B->K*I I)
- SCP (B_s -> ψ φ)
- Confirmation from the lattice that SM "predicted" value of sin2β is significantly above either of direct measurements
- Eventually SBFs should be able to tell decisively