Measurements of β / ϕ_1 from $B^0 \rightarrow \eta' K^0$ and $B^0 \rightarrow \omega K_S^0$

Alessandro Gaz University of Colorado

5th CKM Workshop Rome, September 10th 2008

Outline

- Motivations;
- Experimental techniques;
- $B^0 \rightarrow \eta' K^0$ at BaBar and Belle;
- $B^0 \rightarrow \omega K_s^0$ at BaBar and Belle;
- Flavor-SU(3) modes related to $B^0 \rightarrow \eta' K^0$;
- Summary.

Standard-Model expectations

 $b \rightarrow s$ penguin dominated decays $B^{0} \rightarrow \eta' K^{0}$ and $B^{0} \rightarrow \omega K^{0}$ are sensitive to the CKM angle $\beta(\phi_{1})$;

for $B^{0} \rightarrow \omega K_{s}^{0}$

CKM Workshop 2008

However, the presence of color-suppressed tree amplitudes causes S_{f} to shift from $\sin 2\beta$;

Verifying that $\Delta S_{f} = -\xi_{f}S_{f} - \sin 2\beta$ is within theory expectations is a crucial test for the validity of the Standard Model. $\xi_{\rm f}$ = -1 for K_{_{\rm S}} , +1 for K_

Estimates of Tree Pollution

- ΔS_{f} estimated/constrained using perturbative QCD, QCD factorization, and SCET;
- Also possible to get constraints on ΔS_f from SU(3) flavor symmetry: need experimental input from related decay modes;
- Small contribution of tree amplitude to $B^{0} \rightarrow \eta' K^{0}$;
- Large contribution of tree amplitude to $B^{0} \rightarrow \omega K^{0}$;

$$\Delta S_{\eta'K^0} \in [-0.03, +0.03]$$

 $\Delta S_{\omega K_S} \in [-0.0, +0.2]$

C_f measures the direct CP-asymmetry: expected to be ~0.01 for $\eta' K^o$ and ~0.1 for ωK^o .

QCDF Beneke, PLB **620**, 143 (2005) SCET/QCDF Williamson, Zupan, PRD **74**, 014003 (2006) QCDF Cheng, Chua, Soni, PRD **72**, 014006 (2005) SU(3) Gronau, Rosner, Zupan, PRD **74**, 093003 (2006)

Time dependent analysis

- Fully reconstruct B_{CP} , flavor-tag the other B;
- Both BaBar and Belle use multivariate flavor-tagging algorithms;

Effective tagging efficiency:

 $Q = \varepsilon (1 - 2w)^2$

 $\epsilon = efficiency$ w = mistag probability

$$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left[1 \pm \left(-\xi_f S_f \sin(\Delta m \Delta t) + C_f \cos(\Delta m \Delta t)\right)\right]$$

 f_± modified for mistagging and ∆t resolution. The relevant parameters are determined on a large sample of fully reconstructed self-tagging B decays.

Background discrimination

- Dominant background: $q\overline{q}$ (q = u, d, s, c);
- Exploit B meson kinematics (well determined at B-factories) and eventshape (qq tends to be jet-like, while B decay products are 'spherical');

Event-shape discriminating variable: Fisher discriminant \mathcal{F} (BaBar) or Likelihood Ratio $\mathcal{R}_{s/b}$ (Belle) exploiting variables related to the event topology: Legendre or Fox-Wolfram moments, direction of momentum and thrust with respect to beam axis, ...

Datasets

Data taking still on-going:

Measurements presented today based on an integrated luminosity of **492 fb**⁻¹ Data taking ended on Apr 7th 2008: BaBar's last word on $B^{0} \rightarrow \eta' K^{0}$ and $B^{0} \rightarrow \omega K_{s}^{0}$, based on the full Y(4S) sample (**425 fb**⁻¹)

$B^{0} \rightarrow \eta' K^{0}$

- Pretty high Branching Fraction: $(65 \pm 4) \times 10^{-6}$;
- Both BaBar and Belle reconstruct 7 final states:

$$\eta'(\rho\gamma, \ \eta_{\gamma\gamma} \ \pi^+\pi^-, \ \eta_{3\pi} \ \pi^+\pi^-) K_S^0 \ (\pi^+\pi^-) \\\eta'(\rho\gamma, \ \eta_{\gamma\gamma} \ \pi^+\pi^-) K_S^0 \ (\pi^0\pi^0) \\\eta'(\eta_{\gamma\gamma} \ \pi^+\pi^-, \ \eta_{3\pi} \ \pi^+\pi^-) K_L^0$$

• Unbinned Maximum Likelihood Fit to the variables:

- Dominant background: $q\overline{q}$ events, modeled from data sidebands;
- BB background component modeled from the simulation.

Belle Collaboration, PRL 98, 031802 (2007)

Mode-dependent cuts applied on ΔE

CKM Workshop 2008

A. Gaz - University of Colorado

 $B^{\,0} \rightarrow \eta' K^{\,0}$

Dominant systematic uncertainties: S: uncertainties on resolution function C: interference from DCSD on tag side

Maximum Likelihood fit simultaneously to K_s and K_L :

$$\begin{aligned} \xi_{\eta'K^0} S_{\eta'K^0} &= 0.64 \pm 0.10 \pm 0.04 \\ C_{\eta'K^0} &= 0.01 \pm 0.07 \pm 0.05 \end{aligned}$$

Separating K_s from K_L :

$$-\xi_{\eta'K_S}S_{\eta'K_S} = 0.67 \pm 0.11$$

$$C_{\eta'K_S} = 0.03 \pm 0.07$$

$$\xi_{\eta' K_L} S_{\eta' K_L} = 0.46 \pm 0.24$$

 $C_{\eta' K_L} = -0.09 \pm 0.16$

$B^{0} \rightarrow \eta' K^{0}$

 K_{L} modes: purity of the sample further improved by a Neural Network which exploits variables related to the shape of the clusters in the calorimeter

Signal yields (flavor tagged):

- $\eta' K_{s}$: 1959 ± 58 (1457 ± 43)
- $\eta' K_{L}$: 556 ± 38 (341 ± 23)

total: 2515 ± 69 (1798 ± 49)

CKM Workshop 2008

$B^{0} \rightarrow \eta' K^{0}$

Maximum Likelihood fit separately to K_s and K_1 modes:

 $-\xi_{\eta'K_S}S_{\eta'K_S} = 0.53 \pm 0.08 \pm 0.02$ $C_{\eta'K_S} = -0.11 \pm 0.06 \pm 0.02$

$$\begin{aligned} &\xi_{\eta'K_L} S_{\eta'K_L} &= & 0.82 \pm 0.19 \pm 0.02 \\ &C_{\eta'K_L} &= & 0.09 \pm 0.14 \pm 0.02 \end{aligned}$$

Final results computed through scans of $-2 \ln \mathcal{L}$:

Dominant systematic uncertainties: S: BB background and resolution model C: Interference from DCSD on tag side

$$\begin{aligned} -\xi_{\eta'K^0} S_{\eta'K^0} &= 0.57 \pm 0.08 \pm 0.02 \\ C_{\eta'K^0} &= -0.08 \pm 0.06 \pm 0.02 \end{aligned}$$

$B^{0} \rightarrow \omega K_{s}^{0}$

- Branching Fraction $\sim 5.5 \times 10^{-6}$;
- Only usable decay mode: $\omega \rightarrow \pi^+\pi^-\pi^0$, $K_S \rightarrow \pi^+\pi^-$;
- Discriminating variables:

- Dominant background: qq events, modeled from data sidebands;
- BB background component modeled from the simulation.

CKM Workshop 2008

A. Gaz - University of Colorado

CKM Workshop 2008

A. Gaz – University of Colorado

SU(3) related channels

• The decay amplitude for $B^{0} \rightarrow \eta' K^{0}$ can be written as:

$$A(B^0 \to \eta' K^0) = A'_P + A'_C = |A'_P|e^{i\delta} + |A'_C|e^{i\gamma}$$

$$\begin{array}{lll} \mathsf{A}_{\mathsf{p}}: \text{ amplitudes containing } V_{cb}^{\ *} V_{cd} \\ \mathsf{A}_{\mathsf{c}}: \text{ amplitudes containing } V_{ub}^{\ *} V_{ud} \\ \delta: \text{ strong phase} \\ \gamma: \mathsf{CKM angle} \end{array} \qquad \begin{array}{lll} S_{\eta'K} &=& \frac{\sin 2\beta + 2|A_C'/A_P'|\cos\delta\sin(2\beta + \gamma) - |A_C'/A_P'|^2\sin(2\alpha)}{R_{\eta'K}} \\ C_{\eta'K} &=& \frac{2|A_C'/A_P'|\sin\delta\sin\gamma}{R_{\eta'K}} \\ R_{\eta'K} &\equiv& 1 + 2|A_C'/A_P'|\cos\delta\cos\gamma + |A_C'/A_P'|^2 \end{array}$$

• Using the flavor-SU(3) decomposition, A'_P/A'_C can be expressed in terms of SU(3) related amplitudes, and bound:

$$\frac{|\mathcal{R} - \lambda^2|}{1 + \mathcal{R}} \le |A'_C / A'_P| \le \frac{\mathcal{R} + \lambda^2}{1 - \mathcal{R}}$$

$$\mathcal{R}^{2} \equiv \frac{\bar{\lambda}^{2}[|\Sigma_{f}a_{f}A(f)|^{2} + |\Sigma_{f}a_{f}\bar{A}(f)|^{2}]}{|A(B^{0} \to \eta' K^{0})|^{2} + |A(\bar{B}^{0} \to \eta' \bar{K}^{0})|^{2}}$$

 λ : sine of Cabibbo angle f : SU(3) related final state

SU(3) related channels

• Among the several relations that can be used:

1)
$$\Sigma_f a_f A(f) = \frac{1}{4\sqrt{3}} A(\pi^0 \pi^0) - \frac{1}{3} A(\pi^0 \eta) + \frac{5}{6\sqrt{2}} A(\pi^0 \eta')$$
 Y. Grossman, Z. Ligeti,
+ $\frac{2}{3\sqrt{3}} A(\eta \eta) - \frac{11}{12\sqrt{3}} A(\eta' \eta') - \frac{5}{3\sqrt{3}} A(\eta \eta')$ PRD **68**, 074012 (2003)

2)
$$\Sigma_f a_f A(f) = -\frac{5}{6}A(\pi^0 \eta) + \frac{1}{3\sqrt{2}}A(\pi^0 \eta') - \frac{\sqrt{3}}{2}A(\eta \eta')$$

M. Gronau, J. L. Rosner, J. Zupan PRD 74, 014003 (2006)

2) Assumes exchange and penguin annihilation to be negligible

• Using the available experimental information, GRZ quote:

1)
$$\mathcal{R} < 0.116$$

 $-0.133 < \Delta S_{\eta'K_S} < 0.152$

2)
$$\mathcal{R} < 0.070$$

 $-0.046 < \Delta S_{n'K_S} < 0.094$

459M BB SU(3) related channels

• BaBar searched for $B^{o} \rightarrow \eta' \eta$, $B^{o} \rightarrow \eta \pi^{o}$ and $B^{o} \rightarrow \eta' \pi^{o}$ with the full dataset;

Mode	$\mathcal{B}(10^{-6})$ (90% C.L. upper limit)
$B^0 o \eta' \eta$	$0.5 \pm 0.4 \pm 0.1 \; (< 1.2)$
$B^0 \to \eta \pi^0$	$0.9 \pm 0.4 \pm 0.1 \; (< 1.5)$
$B^0 o \eta' \pi^0$	$0.9 \pm 0.4 \pm 0.1 \; (< 1.5)$

• Improvement by a factor ~1.5 on the upper limit of $\eta' \eta$ with respect to previous results, no improvement on $\eta \pi^o$ and $\eta' \pi^o$.

Theory predictions:

Mode	SU(3)	QCD fact.	SCET	PQCD
$B^{0} \rightarrow \eta' \eta$ $B^{0} \rightarrow \eta' \pi^{0}$ $B^{0} \rightarrow \eta \pi^{0}$	1.2 ± 0.1 1.0 ± 0.1 1.0 ± 0.1	$\begin{array}{c} 0.3^{+0.6}_{-0.2} \\ 0.4^{+0.3}_{-0.2} \\ 0.3^{+0.5}_{-0.3} \end{array}$	$2^{+6}_{-2} \\ 2^{+3}_{-1} \\ 1 \pm 1$	$- \\ 0.2^{+0.2}_{-0.1} \\ 0.2 \pm 0.1$

BaBar Collaboration, PRD-RC 78 011107 (2008)

CKM Workshop 2008

A. Gaz – University of Colorado

Conclusions

• BaBar and Belle get consistent results on the CP-violation parameters for $B^{0} \rightarrow \eta' K^{0}$ and $B^{0} \rightarrow \omega K_{s}^{0}$, no significant discrepancy with the Standard Model is seen;

 Some progress on flavor-SU(3) bounds, but probably we are getting close to the limits of the method.

Backup Slides

SU(3) related channels

Modes related to through SU(3) flavor symmetry:

$$\begin{array}{rcl} A(B^{0} \to K^{+}K^{-}) &= -e - pa \\ A(B^{0} \to K^{0}\bar{K}^{0}) &= p + pa \\ \sqrt{2}A(B^{0} \to \pi^{0}\pi^{0}) &= p - c + e + pa \\ \sqrt{6}A(B^{0} \to \pi^{0}\eta) &= -2p - s + 2e \\ \sqrt{3}A(B^{0} \to \pi^{0}\eta') &= p + 2s - e \\ (3/\sqrt{2})A(B^{0} \to \eta\eta) &= p + s + c + e + (3/2)pa \\ 3\sqrt{2}A(B^{0} \to \eta'\eta') &= p + 4s + c + e + 3pa \\ 3\sqrt{2}A(B^{0} \to \eta\eta') &= -2p - 5s - 2c - 2e \end{array}$$

- p: penguin
- s: singlet penguin
- c: color suppressed
- e: exchange

pa: penguin annihilation

More experimental results:

 $BR(B^{0} \longrightarrow \eta \eta) = (0.8 \pm 0.4 \pm 0.1) \times 10^{-6} \quad (< 1.4)$ BR(B⁰ $\longrightarrow \eta' \eta'$) = (0.9^{+0.8}_{-0.7} ± 0.1) × 10⁻⁶ (< 2.1)

Preliminary result presented at **FPCP**, Taipei 2008

BR(B⁰
$$\rightarrow \pi^{0}\pi^{0}$$
) = (1.83 ± 0.21 ± 0.13) x 10⁻⁶
arXiv: 0807.4226 [hep-ex]

 $B^{0} \rightarrow \omega K_{s}^{0}$

• Selection:

Belle	BABAR
$5.27 < M_{bc} < 5.29 \text{ GeV}$ $-0.10 < \Delta E < 0.08 \text{ GeV}$	$\begin{vmatrix} 5.25 < m_{ES} < 5.29 \text{ GeV} \\ -0.20 < \Delta E < 0.20 \text{ GeV} \end{vmatrix}$
$468 < m(K_S^0) < 528 \text{ MeV}$	$ 486 < m(K_S^0) < 510 \text{ MeV}$
$E(\gamma) > 50 \text{ MeV} \\ 118 < m(\gamma\gamma) < 150 \text{ MeV} \\ p^*(\pi^0) > 350 \text{ MeV} \end{cases}$	$\begin{vmatrix} E(\gamma) > 50 \text{ MeV} \\ 120 < m(\gamma\gamma) < 150 \text{ MeV} \\ E(\pi^0) > 250 \text{ MeV} \end{vmatrix}$
$752 < m(\omega) < 812 \text{ MeV}$	$ 735 < m(\omega) < 825 \text{ MeV}$

Background (data sidebands) 24

0.5

0

1.0

Н

5 Δt (ps)

CKM Workshop 2008