

## Outline



- Radiative penguins & photon polarization in  $b \rightarrow s \gamma$  transitions
- **Event Selection**
- Probing for the photon polarization
  - Summary

#### LHCb detector and its general capabilities are described in Patrick Koppenburg's talk



NIKHEF



## Loops and Penguins



## Rare (= "loop-induced") and especially penguin-mediated decays are essential part of LHC(b) physics program:

- Electroweak penguin  $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ 
  - talk by Mitesh Patel, 12 Sep, 5pm
- Gluonic penguin  $\mathbf{B}_{s} \rightarrow \phi \phi$ 
  - talk by Yuehong Xie, 10 Sep, 4pm
- Hunting for "SUSY penguin":  $\mathbf{B}_{s} \rightarrow \mu^{+}\mu^{-}$ 
  - talk by Sergey Sivoklokov, 12 Sep,12:10
    - And the radiative penguins are here ...



NIKHEF

## Radiative penguins



Radiative penguin decays of  $B^+\&B^0$  mesons have been discovered by CLEO and both inclusive  $b \rightarrow s\gamma$ and exclusive decays have been intensively studied by CLEO, BaBaR and Belle

•  $Br(b \rightarrow s\gamma)$  is one of the most efficient killer for New Physics Model

Recently Belle has observed  $\mathbf{B}_{s} \rightarrow \phi \gamma$ 

NIK

EF





## Why penguins are attractive?



#### The clear picture in SM:

- One diagram dominance
- One Wilson coefficient  $C_7^{\text{eff}}(\mu)$



 Reliable theoretical description at (N)NLO allows the numerically precise predictions

#### Loops

EF

- New Physics contribution can be comparable and even dominating to (small) SM amplitudes
- NP appears not only in modifications of Br, but also in asymmetries and the angular effects

"Sensitive also to spin structure of NP"



## Exclusive radiative penguins



Not so rare decays  $Br(B \rightarrow K^{*0}\gamma) = (4.3 \pm 0.4)x10^{-5}$   $Br(B_s \rightarrow \phi \gamma) = (3.8 \pm 0.5)x10^{-5}$ 1-amplitude dominance strong phase appears at order of  $\alpha_s$  or 1/m<sub>b</sub>

EF

 →"Direct" asymmetries are small (<1%) for b→sγ &</li>
 a bit larger O(10%) for b→dγ

Photons are polarized

 Mixing asymmetries vanishes, \*BUT\*



#### Mixing asymmetries are vanished, but ...



## $B \rightarrow f^{CP} \gamma$ is not *CP* eigenstate! $\gamma_R / \gamma_L \approx m_s / m_b$ Take it into account: not suppressed!

$$\Gamma(\mathbf{B}_q(\bar{\mathbf{B}}_q) \to f^{CP}\gamma) \propto e^{-\Gamma_q t} \left(\cosh \frac{\Delta \Gamma_q t}{2} - \mathcal{A}^\Delta \sinh \frac{\Delta \Gamma_q t}{2} \pm \pm \mathcal{C} \cos \Delta m_q t \mp \mathcal{S} \sin \Delta m_q t\right)$$

#### SM:

NIKHEF

- C = 0 direct CP-violation
- S = sin2y sinø
- $A^{\Delta} = \sin 2\psi \cos \phi$

$$\tan \psi \equiv \left| \frac{A(\bar{\mathbf{B}} \to f^{CP} \gamma_R)}{A(\bar{\mathbf{B}} \to f^{CP} \gamma_L)} \right|$$



10 Sep 2k+8

Vanya BELYAEV (NIKHEF#Amsterdam & ITEP/Moscow)

8

## $\Delta \Gamma_{\rm s} / \Gamma_{\rm s} \neq 0$

*циср* 

C is practically zero

EF

NI

- 1 diagram dominance
- S is a product of CP-eigenstate fraction <u>and</u> (small) phase of  $B_s$  oscillation and  $b \rightarrow s\gamma$  penguin
  - double smallness is SM
- A<sup>A</sup> is just a fraction of *CP*-eigenstate
  - = Fraction of wrongly polarized photons
  - No "other" suppression factors, only  $\Delta\Gamma_s/\Gamma_s$

Essentially we study <u>CP-violation</u> in  $B_s \rightarrow \phi \gamma$  as <u>an instrument</u> to probe Lorentz structure of  $b \rightarrow s \gamma$  transitions

F.Muheim, Y.Xie & R.Zwicky, Phys.Lett.B664:174-179,2008



# What we know about $B_s \rightarrow \phi \gamma$ at LHCb?



**Full Monte Carlo simulation** 

#### What we "know" now:

- The yield is 11k per 2 fb<sup>-1</sup> (and 70k of  $B^0 \rightarrow K^{*0}\gamma$ ) LHCb:  $O(1 B_s \rightarrow \phi \gamma)$ /hour at 2x10<sup>32</sup>
  - **Background** is
    - <6k @ 90%CL
- The mass resolution ~90 MeV/ $c^2$
- The proper time resolution:  $\sigma$ ~78fs
  - 50/50  $\sigma_1$ =52fs,  $\sigma_2$ =114fs

#### L.Shchutska et al, CERN-LHCb-2007-030



NIKHEF

## **Event selection**



- Dedicated LO trigger for photons with high Et B-decay products do not point to reconstructed primary vertices
- Exclusively reconstructed B-candidate does point to primary vertex
- B-candidate is associated with the primary vertex with minimal impact parameter (significance)

NIK

EF





## Signal proper time resolution

NIKHEF





## Sensitivity to $sin2\psi$



- To evaluate our sensitivity to  $sin2\psi$
- toy Monte Carlo (10<sup>4</sup> experiments) using RooFit
- Unbinned maximum likelihood fit
  - Proper lifetime & error
  - Reconstructed mass
- Per-event proper time errors

 $m(B_s) = 5.367 \text{ GeV}/c^2$   $\tau(B_s) = 1.43 \text{ ps}$   $\Delta\Gamma_s = 0.084 \text{ ps}^{-1}$  $\Delta m_s = 17.77 \text{ ps}^{-1}$ 

- Resolutions & Efficiencies from full MC Parameterize the background from mass-sidebands
- Important ingredient proper time acceptance function <u>L.Shchutska *et al*, CERN-LHCb-2007-147</u>



**H**EF

NI

## Likelihood

NI

INTERCEDENTI

TRACE TIME



d . .

14

$$P_{\kappa}(t,m) = f_{s} \frac{\left\{ e^{-\Gamma\tau} [I_{+}(\tau) + \kappa(1 - 2\omega)I_{-}(\tau)] \right\} \otimes G(t - \tau)\varepsilon(t)g_{s}(m)}{\int \left\{ e^{-\Gamma\tau} [I_{+}(\tau) + \kappa(1 - 2\omega)I_{-}(\tau)] \right\} \otimes G(t' - \tau)\varepsilon(t')dt'} + \left[ I_{+}(\tau) = \cosh \frac{\Delta\Gamma\tau}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta\Gamma\tau}{2} \right] + (1 - f_{s})\varepsilon_{b}(m, t),$$

$$I_{-}(\tau) = \mathcal{C} \cos \Delta m_{s}\tau - \mathcal{S} \sin \Delta m_{s}\tau$$

$$\mathcal{L}_{0} = \prod_{i=1}^{N_{\text{Bs}}} P_{-1}(m_{i}, t_{i}, \sigma_{ti}) \prod_{i=1}^{N_{\text{Bs}}} P_{1}(m_{i}, t_{i}, \sigma_{ti}) \prod_{i=1}^{N_{untagged}} P_{0}(m_{i}, t_{i}, \sigma_{ti}),$$

## Proper time acceptance

NIKHEF





## Proper time acceptance



16

It is a vital to know it with very high precision  $\varepsilon_s(t) \propto \frac{(at)^c}{1+(at)^c}$ 

- 5% bias in "a" -> bias in  $\sin 2\psi \sim 0.2$
- We are planning to calibrate it using the control channels
  - $B^0 \rightarrow K^{*0} \gamma$

EF

NIK

•  $B_s \rightarrow \phi J/\psi$ 

The own acceptance could be extracted from data in both cases

- E.g. with O(1%) precision for  $B^0 \rightarrow K^{*0} \gamma$
- The precision of "extrapolation" to  $B_s \rightarrow \phi \gamma$  is less clear and under the intensive study now

10 Sep 2k+8 (NIKHEF/Amsterdam & ITEP/Moscow) Vanya BELYAE



## **Results:** $\sigma(A^{\Delta}, C, S)$

*LHCb* 

NI



## Conclusions



19

- LHCb has good potential for measurement of photon polarization in  $B_s \rightarrow \phi \gamma$  decay
- For 2 fb<sup>-1</sup>:  $\sigma(A^{\Delta})=0.22, \sigma(S)=\sigma(C)=0.11$
- for 500pb<sup>-1</sup> ([Ldt at the end of 2k+9):  $\sigma(A^{\Delta}) \sim 0.4$
- 'The result has *moderate* dependency on *B/S*
- The determination of proper time acceptance function from data in under the study now

## Stay tuned and wait for more news



NIK

EF





# Backup slides



NIKHEF

10 Sep 2k+8 Vanya BELYAEV (NIKHEF/Amsterdam & ITEP/Moscow)

20

## Example of models

NIKHEF



## Anomalous right-handend top couplings J.P.Lee'03



## B: proper-time in sidebands



22

## Fit separately left and right sidebands





NI

EF

#### Signal proper time resolution as function of $\cos\Theta$





Vanya BELYAEV (NIKHEF/Amsterdam & ITEP/Moscow)

10 Sep 2k+8

23

Signal proper time resolution as function of  $\cos\Theta$ 





EF

NI

10 Sep 2k+8 Vanya BELYAEV (NIKHEF/Amsterdam & ITEP/Moscow)



LHCh

## The shape of background



## Vary the "short/long"-lived components

NIKHEF



## Stability tests: B/S



26

#### There is some dependency on B/S level:

NIKHEF



## **Results:** pulls







## Resolution and $\Delta\Gamma_s/\Gamma_s$



28

## Vary the proper time resolution

NIKHEF

Use simple model with two Gaussians and vary the proportion





## Acceptance function



29

## Combined fit of $B_s \rightarrow \phi \gamma$ and $B_d \rightarrow K^* \gamma$

- The acceptance function can be fully determined in  $B_d \rightarrow K^* \gamma$  assuming known proper time resolution
- In this simplified test do combined fit of both channels to determine a and c in  $B_d \rightarrow K^* \gamma$  and use them in  $B_s \rightarrow \phi \gamma$  $\mathcal{E}(t) = \frac{(at)^c}{1 + (at)^c}$
- Use 68 k  $B_d \rightarrow K^* \gamma$  events and ignore background

10 Sep 2k+8

$$\sigma_a = 0.01$$

 $\sigma_{c} = 0.02$ 

 $a = 0.74 \text{ ps}^{-1}$ c = 1.86

#### **Background parameterization**





NIKHEF

10 Sep 2k+8 Vanya BELYAEV (NIKHEF/Amsterdam & ITEP/Moscow)

30