$B_s \rightarrow \mu^+ \mu^- decay at LHC$

Sergey Sivoklokov SINP Moscow University (on behalf of ATLAS/CMS/LHCb Collaborations) CKM2008, Roma, Italy September 12,2008

Motivation

Physics:

- $B_{S}^{0} \rightarrow \mu^{+}\mu^{-}$ is highly suppressed in SM (box, penguin diagr.)
 - → $BR^{SM}(B_s \rightarrow \mu\mu)=(3.35\pm0.32)x10^{-9}$ (hep-ph/0604057)
 - → Best exp. limit BR^{CDF}(B_s→µµ)<5.8x10⁻⁸ (95%CL) (arXiv:0712.1708v2)
- Sensitive to New Physics (new particles in the loop)

→ MSSM ~tan⁶β

 BR in the range 10⁻⁹ ÷10⁻⁷ is favored by some models (i.e. CMSSM with constrains from g_u-2 measurements)

	Tevatron	LHC
√s	1.96 TeV	14 TeV
σ(bbbar)	150 μb	500 µb
σ_{inel}	60 mb	80 mb
Bunch cross. rate (Δt)	7.6 MHz (132 ns)	40 MHz (25 ns)
σ_{xy}	28(16) μm	16µm
σ _z	30 cm	7.5 cm
Luminosity	2x10 ³² cm ⁻² s ⁻¹	2x10 ³² -10 ³⁴ cm ⁻² s ⁻¹
events/crossing	1,6	2,0-25,0

<u>LHC machine</u>:

A Sector Collider->heavy background conditions, extremely high luminosity

S

W[±] ₹

SM

70

λαλαλα

MSSM

~ tan⁶β

ս*

μ

μ†

μ

- → ③: ~10⁵ bb pairs/s @ L=10³³cm⁻²s⁻¹
- Several experiments with an excellent tracking detectors, complementary kinematic regions

LHC status

- This year:
 - Energy: 5 TeV
 - 1, 12, 43, 156 bunches per beam
 - Luminosity 10²⁷->10³² cm⁻²s⁻¹, events/crossing from ~0 to ~2
 - Integrated: first month few pb⁻¹, another – 30-40 pb⁻¹
- 2009: 7 TeV, 10^{33} cm⁻²s⁻¹, ~6 fb⁻¹

Detectors

- ATLA S & CMS general purpose detectors (with emphasis on high-p_T physics)
 - very good tracking ($|\eta|$ <2.5)
- precise vertexing (pixels, Si-strip, TRT (e/h-id, ATLAS) R>4-5cm)
- perfect muon system

Sergey Sivoklokov

- LHCb dedicated to B-physics (high η , low p_T)
- single-arm spectrometer, L~2x10³² cm⁻²s⁻¹
- excellent vertexing (R>0.8 cm)
- K/π/p particle ID (RICH)

 $B_s \rightarrow \mu + \mu - at LHC$ CKM2008, Roma, Italy 9-13 Sep.2008 4

Trigger in ATLAS & CMS

- Efficient trigger a key component in a heavy BG environment and a huge data streams volumes
- Both experiments utilize a trigger system with several levels to gradually reduce rate from 40 MHz (bunch crossing rate) to acceptable for permanent storage level of ~100 Hz
- An efficient di-muon trigger allow to continue B-physics study even at the design luminosity

ATLAS trigger (muons)

- Level 1 trigger hardware based, info. from fast trigger chambers (TGC,RPC)
 2 muons p_T>6 GeV required
- High Level Trigger (HLT Level 2 and Event Filter) software based
 - muons confirmed in precision chambers
 - combined with inner detector track
 - vertex fit, inv.mass cut
- \bullet p_{T} threshold can be lower in the startup

period at lower luminosity, also single muon trigger at LVL1 can be used with a subsequent search of the second muon (with a lower threshold – up to 4 GeV)

1

CMS trigger (muons)

- Level 1 Triggers
 - muons and calorimeters,
 - Latency: 3.2 µs, 40 MHz -> 100 kHz
- High-level Triggers (HLT) fast (local) reconstruction, 100 kHz -> 100 Hz
- B-physics triggers
 - → Level 1: single- or di-muon trigger 1µ: $p_T > 7(14)$ GeV/c,

 2μ : p_T > 3(7) GeV/c

HLT: exclusive and inclusive b/c triggers at ~5Hz

partial reconstruction,

displaced di-muons

LHCb trigger

- run at reduced L = $2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
- L0 trigger: $p^{\mu,\mu\mu}_{T} > \sim 1 \text{ GeV}$
- HLT1 : confirm L0 objects with tracker, VELO, optional IP cut
- selection for specific channels
- output ~1.5 kHz / small event size

Offline event selection

• $B^0_{S} \rightarrow \mu^+ \mu^-$: clean experimental signature,

9

but a main challenge is to controlling the background

- Similar approach in all experiments:
 - exploit precise tracking to reconstruct secondary vertex and separate signal candidate events from di-muon background
- ATLAS & CMS discriminating variables:
 - decay flight length (significance)
 - pointing angle between di-muon momentum and vector from primary vertex to di-muon vertex
 - B^0_{S} isolation (no or little hadronic activity around B^0_{S} flight direction)
 - mass cut
- LHCb combined geometrical likelihood (*GL* lifetime, impact parameter (IP), distance of closest approach, B⁰_S IP to primary vtx, Isolation)

Sergey Sivoklokov $B_s \rightarrow \mu + \mu - at$ LHC CKM2008, Roma, Italy 9-13 Sep.2008

Background

Different sources considered:
 ★ combinatorial di-muon BG

 (dominated bbbar->μ μ X)
 ★ exclusive BG (2-3 body B_s,B_d,B_c decays*)
 (μ mis-id) - mostly insignificant
 ★ estimate BG in search region from sidebands

*) all processes calculated within SM LHCb background in sensitive region

	Source	Events in SR per nominal year
нср	$B_s^0 o \mu^+ \mu^-$	22.8
	$b\overline{b} ightarrow \mu \mu X$	150; (< 324 at 90% C.L)
	$B ightarrow h^+ h^-$	8; (<17.2 at 90% C.L)
	$B^0_s \to \mu^+ \mu^- \gamma$	0; (<2.44 at 90% C.L)
B_c^+	$ ightarrow J/\Psi(\mu^+\mu^-)\mu^+ u_\mu$	0; (< 20 at 90% C.L)

 $B_s \rightarrow \mu + \mu - at LHC$

10

ATLAS analysis

	$B_s \rightarrow \mu \mu$ efficiency	$bb \rightarrow \mu \mu X$ efficiency		
Isolation>0.9	0.24	(2.6±0.3)x10 ⁻²		
L _{xy} > 0.5 mm	0.26	(110.2)v(10 ⁻³ *)		
α < 0.017 rad	0.23	$(1\pm 0.3) \times 10^{-1}$		
M=M _{Bs} ⁺¹⁴⁰ -70MeV	0.76	0.079		
Events/10fb ⁻¹	5,7	14 ⁺¹³ -10		
*) α & L _{xy} tre	ated simultane	ously to		
account for correlations				
CMS analysis				
	B _s →μμ eff.	bb→µµX efficienc		
Isolation > 0.8	35 0.29	0.023		
L _{xy} / σ _{xy} > 18	0.37	0.024		
α < 0.1 rad	0.63	0.06		
M=M _{Bs} ⁺¹⁰⁰ -100N	1e∨ 0.99	0.29		
Events/10fb	¹ 6,1	14 ⁺²² -14		

Sergey Sivoklokov

 $B_s \rightarrow \mu + \mu - at LHC$

CKM2008, Roma, Italy 9-13 Sep.2008 11

LHCb analysis

- The analysis is performed on events surviving a common selection (see LHCb 2008-18) for signal and control channels (i.e. B_(s)→hh and B⁺→J/Psi K⁺) with a selection efficiency for events fully reconstructed of: ε(B_s→μμ) ≅ ε(B_(s)→hh) ≅ ε(B⁺→J/Psi K⁺) ≅ 60%
- The GL, Inv.mass and Muon ID likelihoods are used to discriminate S/B in 3D space
- In the most sensitive bin LHCb expects

 8 signal events assuming the SM BR for
 12 bkg events with 2 fb⁻¹.
- Control, normalisation: Signal (*GL*): B_(s)→hh (~200k @ 2 fb⁻¹) background – from sidebands Normalisation - B⁺→J/Psi K⁺(2M @ 2 fb⁻¹)

	GL	
Mass	0.5 - 0.65	0.65-1
5406.6 - 5429.6	$\mathbf{S} = 0.23_{17^{+13}_{-8.1}}$	$\mathbf{S} = 0.72_{9.5^{+12}_{-6.1}}$
5384.1 - 5406.6	$\mathbf{S} = 1.0_{19^{+15}_{-9.0}}$	$\mathbf{S} = 2.9_{9.5_{-6.1}^{+12}}$
5353.4 - 5384.1	$S = 3.3_{26^{+20}_{-12}}$	$S = 7.5_{12^{+16}_{-7.7}}$
5331.5 - 5353.4	S = 1.4 $19^{+15}_{-9.0}$	$\mathbf{S} = 3.1_{9.5^{+12}_{-6.1}}$
5309.6 - 5331.5	$\mathbf{S} = 0.42_{19^{+15}_{-9.0}}$	$\mathbf{S} = 0.84 \\ 9.5^{+12}_{-6.1}$

CKM2008, Roma, Italy 9-13 Sep.2008 12

Sensitivity to $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ (ATLAS/CMS)

- To convert number of observed events to BR the relative normalisation to the reference channel with a well-measured BR can be used.
 - The natural choice is $B^+ > J/\psi(\mu\mu)K^+$
 - di-muon trigger and reconstruction efficiencies are essentially cancelled $BR = \frac{BR_{cal} \cdot \boldsymbol{\varepsilon}_{cal}^{REC} \boldsymbol{\varepsilon}_{cal}^{SEL/REC} \boldsymbol{\varepsilon}_{cal}^{TRIG/SEL}}{\boldsymbol{\varepsilon}_{sig}^{REC} \boldsymbol{\varepsilon}_{sig}^{SEL/REC} \boldsymbol{\varepsilon}_{sig}^{TRIG/SEL}} \cdot \frac{f_{cal}}{f_{Bs}} \cdot \frac{N_{sig}}{N_{cal}}$ for signal and calibration channels
- To set a limit on BR:
 - Bayesian approach (T.Hebekker, L3 Note 2633 (2001)

LHCb sensitivity

Luminosity (fb')

The shaded region correspond to the statistical uncertainty in the background simulation.

> With SM Branching ratio 2 fb⁻¹(1Y) \Rightarrow 3 σ evidence 6 fb⁻¹(3Y) \Rightarrow 5 σ observation

Sergey Sivoklokov

 B_{s} -> μ + μ - at LHC

14 CKM2008, Roma, Italy 9-13 Sep.2008

Conclusions and Outlook

- All 3 experiments have a detailed program for B->μμ discovery and study
- LHCb has a potential for early discovery at low luminosity running (continuing with L = 2 x 10³² further)
- Already after several weeks of stable LHC operation considerable improvements of current limits are expected:
 - with only 0.1 fb⁻¹ LHCb can observe at the 5σ level a BR~1.5x10⁻⁸
 favored by some SUSY scenarios
- ATLAS and CMS will be competitive starting from L = 10³³ and will continue at 10³⁴cm⁻²s⁻¹

X Panoramix					
Velo Rich ST OT Calo Muon Global Cosmic Reconstruction Panorami	< menus				
Tree actions Detector J Odd J	Tar	A Gora La creat	Doursectuoore	Cida	
Stat	rob	Alteriviagnet	Downstream	2106	
					ま * </th
Interpreter Python 🖬 🗍					

🔳 mzanetti@fuval-C2F11-20: /nfshome0/ 🗋 CMSSW Visualisation - [CMSSW (3D 🗐 daqshift@SCX5SCR26:/tmp -

🐮 Applications Actions 🥪 碯 🗾

Wed Sep 10, 10:15 AM

Sergey Sivoklokov

 B_s -> μ + μ - at LHC

CKM2008, Roma, Italy 9-13 Sep.2008

Backup slides

Sergey Sivoklokov

 B_s -> μ + μ - at LHC

CKM2008, Roma, Italy 9-13 Sep.2008 19

Strategy for 2008 and 2009

Parameter evolution and rates $L = \frac{N^2 k_b f \gamma}{4 \pi \varepsilon_n \beta^i} F$

Eventrate | Cross = $L\sigma_{TOT}$

All values for nominal emittance, $10m \beta^*$ in points 2 and 8

All values for 936 or 2808 bunches colliding in 2 and 8 (not quite right)

F	arameter	s Beam levels Rates in 1 and 5		Rates in 2 and 8				
k _b	Ν	β* 1,5	I _{beam}	E _{beam}	Luminosity	Events/	Luminosity	Events/
		(m)	proton	(MJ)	(cm ⁻² s ⁻¹)	crossing	(cm ⁻² s ⁻¹)	crossing
43	4 10 ¹⁰	11	1.7 10 ¹²	1.4	8.0 10 ²⁹	<< 1	Depend on the configuration of collision pattern	
43	4 10 ¹⁰	3	1.7 10 ¹²	1.4	2.9 10 ³⁰	0.36		
156	4 10 ¹⁰	3	6.2 10 ¹²	5	1.0 10 ³¹	0.36		
156	9 10 ¹⁰	3	1.4 10 ¹³	11	5.4 10 ³¹	1.8		
936	4 10 ¹⁰	11	3.7 10 ¹³	42	2.4 10 ³¹	<< 1	2.6 10 ³¹	0.15
936	4 10 ¹⁰	2	3.7 10 ¹³	42	1.3 10 ³²	0.73	2.6 10 ³¹	0.15
936	6 10 ¹⁰	2	5.6 10 ¹³	63	2.9 10 ³²	1.6	6.0 10 ³¹	0.34
936	9 10 ¹⁰	1	8.4 10 ¹³	94	1.2 10 ³³	7	1.3 10 ³²	0.76
2808	4 10 ¹⁰	11	1.1 10 ¹⁴	126	7.2 10 ³¹	<< 1	7.9 10 ³¹	0.15
2808	4 10 ¹⁰	2	1.1 10 ¹⁴	126	3.8 10 ³²	0.72	7.9 10 ³¹	0.15
2808	5 10 ¹⁰	1	1.4 10 ¹⁴	157	1.1 10 ³³	2.1	1.2 10 ³²	0.24
2808	5 10 ¹⁰	0.55	1.4 10 ¹⁴	157	1.9 10 ³³	3.6	1.2 10 ³²	0.24

R.Bailey, LHCMAC June 2008

21

 $7 \, \text{TeV}$

Basic expectations

		Normal Ramp			No phase II		
	Vear	Peak Lumi	Annual Integrated (fb-1)	Total Integrated (fb-1)	Peak Lumi	Annual Integrated (fb-1)	Total Integrated (fb-1)
Collimation	2009	0.1	6	6	0.1	6	6
phase 2	2010	0.2	12	18	0.2	12	18
phase z	2011	0.5	30	48	0.5	30	48
Linac/L + ID	2012	1	60	108	1	60	108
	2013	1.5	90	198	1.5	90	198
upgrade	2014	2	120	318	2	120	318
phase 1	2015	2.5	150	468	2.5	150	468
New injectors + IR upgrade phase 2	2016	3	180	648	3	180	648
	2017	3	0	648	3	0	648
	2018	5	300	948	3	180	828
	2019	8	420	1428	3	180	1008
	2020	10	540	2028	3	180	1188
	2021	10	600	2628	3	180	1368
Radiation	2022	10	600	3228	3	180	1548
	2023	10	600	3828	3	180	1728
damage limit	2024	10	600	4428	3	180	1908
555	_2025	10	600	5028	3	180	2088

Sergey Sivoklokov

 B_s -> μ + μ - at LHC

22

ATLAS B-physics program

Measurements overview

CP Violation	$B_{d} \rightarrow J/\psi K_{s}^{0}(\pi\pi)$ $J/\psi \rightarrow \mu\mu/ee$ $B^{+} \rightarrow J/\psi(\mu\mu)K^{+}$ $B_{d}^{0} \rightarrow J/\psi(\mu\mu)K^{*0}(K^{+}\pi^{-})$	sin(2β)
	$B_s \rightarrow J I \psi(\mu \mu) \varphi(KK)$	$\Delta\Gamma_{s} = \Gamma_{H} - \Gamma_{L}$, Γ_{s} , the weak phase ϕ_{s}
Measurement of B _s oscillations:	$B_{s} \rightarrow D_{s}\pi; B_{s,d} \rightarrow D_{s}a_{1}$ $D_{s}^{-} \rightarrow \varphi\pi^{-}; \varphi \rightarrow K^{+}K^{-}$	$\Delta m_s = m_H - m_L$
Rare decays	$B_{s,d} \rightarrow \mu^+ \mu^-; B^0_d \rightarrow K^{*0} \mu\mu$ $\Lambda_b \rightarrow \Lambda \mu\mu; B^0_s \rightarrow \varphi^0 \mu\mu$ radiative rare decays	Precise measurements of the branching ratios and asymmetries
Λ_b polarization measurements	$\Lambda_b \rightarrow J/\psi(\mu\mu)\Lambda(p\pi)$	Asymmetry parameter α _b , P _b , life time measurements
B _c mesons	$B_c \rightarrow J/\psi\pi$; $B_c \rightarrow J/\psi\mu\nu$	Precise determination of B_c mass, B_c life time

LHCb Analysis Details

- Analysis:
 - Signal description: B→hh (~200k events/2fb⁻¹)
 - Background estimation from mass sidebands
 - Normalisation: B⁺→J/ψK⁺ (2M events/2fb⁻¹)
 - Dominant uncertainty on BR from relative B_s , B⁺ hadronisation fraction ~13%

$$BR = \frac{BR_{cal} \cdot \boldsymbol{\varepsilon}_{cal}^{REC} \boldsymbol{\varepsilon}_{cal}^{SEL/REC} \boldsymbol{\varepsilon}_{cal}^{TRIG/SEL}}{\boldsymbol{\varepsilon}_{sig}^{REC} \boldsymbol{\varepsilon}_{sig}^{SEL/REC} \boldsymbol{\varepsilon}_{sig}^{TRIG/SEL}} \cdot \frac{f_{cal}}{f_{Bs}} \cdot \frac{N_{sig}}{N_{cal}}$$

- Events classified according to geometrical likelihood, PID and B_s invariant mass:
 - Geometric likelihood:
 - B_s Lifetime
 - µ SIPS: Mu Impact Parameter Significance
 - DOCA: Distance of closest approach
 - B_s IP: B_s impact parameter to prim. vtx
 - Isolation: No. of good secondary vtx that can be made with μ candidates
 - PID:
 - Calibration muons (MIPs in calorimeter, J/ψ muons)
 - B_s Invariant Mass