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effective lagrangian

Leff = LQCD×QED + 4GF

√
2V ∗

tsVtb

[
10∑

i=1

Ci(µ)Pi +
6∑

i=3

CiQ(µ)PiQ + Cb(µ)Pb

︸ ︷︷ ︸
for QED corrections

]

P4 = (s̄LγµT abL)
∑

(q̄γµT aq),

P5 = (s̄Lγµ1γµ2γµ3bL)
∑

(q̄γµ1γµ2γµ3q),

P6 = (s̄Lγµ1γµ2γµ3T
abL)

∑
(q̄γµ1γµ2γµ3T aq)

P1 = (s̄LγµT acL)(c̄LγµT abL),
P2 = (s̄LγµcL)(c̄LγµbL),

P3 = (s̄LγµbL)
∑

(q̄γµq),

P7 = e16π2mb(s̄LσµνbR)Fµν ,

P8 = g16π2mb(s̄LσµνT abR)Ga
µν ,

P9 = (s̄LγµbL)
∑

(l̄γµl),

P10 = (s̄LγµbL)
∑

(l̄γµγ5l)

P3Q = (s̄LγµbL)
∑

Qq(q̄γµq),

P4Q = (s̄LγµT abL)
∑

Qq(q̄γµT aq),

P5Q = (s̄Lγµ1γµ2γµ3bL)
∑

Qq(q̄γµ1γµ2γµ3q),

P6Q = (s̄Lγµ1γµ2γµ3T
abL)

∑
Qq(q̄γµ1γµ2γµ3T aq),

Pb = 112
[
(s̄Lγµ1γµ2γµ3bL)(b̄γµ1γµ2γµ3b)− 4(s̄LγµbL)(b̄γµb)

]



what can we learn?
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q2 cuts

• Quark-hadron duality breaks down when the rate is dominated 
by charmonium resonances:

•  Three regions:
0.04 GeV2 < q2 < 1 GeV2

1 GeV2 < q2 < 6 GeV2

q2 > 14.4 GeV2

• Model using data [Krüger,Sehgal]

B → Xs(J/ψ,ψ′)→ Xs"
+"−

dominated by the photon pole (b→sγ)
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unaffected

non-perturbative effects 
dealt with using a Fermi 
motion model

• Correction factor added in experimental results
• New idea: use SCET to describe the Xs system (                                       )
• Reduce non-perturbative effects by considering:

Λ2 ! p2
Xs
∼ Λmb ! m2

b

Γcut(B → Xs!
+!−)/Γcut(B → Xu!ν̄)

[Lee, Ligeti, Stewart, Tackmann]

[Ali, Hiller]

[same MX cut]

• MX cuts required to suppress the b → c l- ν → s l- l+ ν ν background

• Best if experimental results presented without correction

!



status

Γ(B̄ → Xs!
+!−) = Γ(b→ Xs!

+!−) + O

(
Λ2

QCD

m2
b

,
Λ3

QCD

m3
b

,
Λ2

QCD

m2
c

)



qed effects

• The rate is proportional to αem2 (μ2). Without QED corrections the scale μ is 
undetermined → 8% uncertainty

log(m!/mb)

• The differential rate is not IR safe 
with respect to photon emission the 
results in the presence of a collinear 
logarithm, 

QED contribution

QED Corrections

NLO QED corrections

are expected to be larger than N3LO QCD corrections.

reduce ±4% scale uncertainty due to

αe(mb) ≈ 1/133 vs. αe(mZ) ≈ 1/128.

This ±4% uncertainty is as large as NNLO QCD precision.

Calculation of NLO QED corrections is threefold

Matching and running calculation;

checked to agree with [Bobeth, Gambino, Gorbahn, Haisch]

Finite corrections, matrix elements of the Pi

Phenomenologically most important: IR divergent ME’s
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collinear γ vs experiments

• Theory: 
include all bremsstrahlung 
photons into the Xs system.

• Experiment (fully inclusive): 
One B is identified; on the other 
side only the two leptons are 
reconstructed. Xs

!+!−

B

!−ν

c

e−

e+

B̄

!+!−

Xs

B̄



• Experiment (sum over exclusive states)

at BaBar and Belle the Xs system is reconstructed from a sum over 
exclusive states (K plus up to 4 pions). Momentum conservation is 
used to guarantee the absence of energetic photons

• The collinear log present in the virtual corrections is not accompanied by 
the corresponding log in the real emission diagrams and doesn’t cancel 
even upon integration over the whole spectrum

• Exact theory prediction depends on details of the experimental 
analysis

• We urge our experimental colleagues to search and include 
energetic photons in the hadronic system (open for discussion)

collinear γ vs experiments
!



• Cross sections expressed in terms of pole masses, are affected by 
renormalon ambiguities

• These long distance effects are also responsible for the 
irreducible O(Λ) uncertainty in the bottom pole mass

• Can be removed switching to a short-distance mass (e.g. 1s)

• Tricky perturbative subtleties (ϒ expansion)

• Huge reward: mb,pole uncertainties are almost completely 
removed

renormalons

m1S
b = (4.68± 0.03)GeV mpole

b ! (4.9± 0.1)GeV



BR and AFB

• Differential decay width (                      ):
dB(B̄ → Xs!+!−)

dŝ
= B(B → Xc!ν)

Γ(B → Xu!ν)
Γ(B → Xc!ν)

dΓ(B̄ → Xs!+!−)/dŝ

Γ(B → Xu!ν)

∝ (4 +
8
ŝ
)
∣∣∣Ceff

7

∣∣∣
2

+ (1 + 2ŝ)(
∣∣∣Ceff

9

∣∣∣
2

+
∣∣∣Ceff

10

∣∣∣
2
) + 12 Re

(
Ceff

7 Ceff∗
9

)

• Forward-Backward asymmetry (                   ):

ŝ = q2/m2
b

z = cos θ!

AFB(ŝ) ≡ dB!!/dŝ(z > 0)− dB!!/dŝ(z < 0)
dB!!/dŝ(z > 0) + dB!!/dŝ(z < 0)

∝ Re
[(

2Ceff
7 + ŝCeff

9

)
C∗

10

]

• New observables:

HT ∝ (1− ŝ)2ŝ

[(
C9 +

2
ŝ
C7

)2

+ C2
10

]

HL ∝ (1− ŝ)2
[
(C9 + 2C7)

2 + C2
10

]
Independent 
combinations of WC’s



αs(Mz) = 0.1189 ± 0.0010 [40] me = 0.51099892 MeV

αe(Mz) = 1/127.918 mµ = 105.658369 MeV

s2
W ≡ sin2 θW = 0.2312 mτ = 1.77699 GeV

|VtsVtb/Vcb|2 = 0.962 ± 0.002 [41] mc(mc) = (1.224 ± 0.017 ± 0.054) GeV [42]

|VtsVtb/Vub|2 = (1.28 ± 0.12) × 102 [41] m1S
b = (4.68 ± 0.03) GeV [31]

BR(B → Xceν̄)exp = 0.1061 ± 0.0017 [43] mt,pole = (170.9 ± 1.8) GeV [44]

MZ = 91.1876 GeV mB = 5.2794 GeV

MW = 80.426 GeV C = 0.58 ± 0.01 [31]

λeff
2 = (0.12 ± 0.02) GeV2 ρ1 = (0.06 ± 0.06) GeV3 [31]

λeff
1 = (−0.243 ± 0.055) GeV2 [42] f 0

u + fs = (0 ± 0.2) GeV3 [24]

f 0
u − fs = (0 ± 0.04) GeV3 [24] f±

u = (0 ± 0.4) GeV3 [24]

Table 1: Numerical inputs that we use in the phenomenological analysis. Unless explicitly
specified, they are taken from PDG 2004 [45].

which implies
δRcut

Rcut
≈ 7.4

δmb

mb
. (52)

Using the pole mass scheme with δmb = 0.1 GeV, this leads to a ≈ 15% error on Rcut. However,
this error gets now significantly reduced in our updated analysis using the kinematical 1S scheme
for the mb mass.

4 Numerical results

The numerical inputs that we adopt are summarized in Table 1.

4.1 Branching ratio in the high-q2 region

For the branching ratio integrated over the region q2 > 14.4 GeV2 we find:

Bhigh
µµ = 2.40 × 10−7

(
1 +

[
+0.01
−0.02

]

µ0
+

[
+0.14
−0.06

]

µb

± 0.02mt +
[
+0.006
−0.003

]

C,mc

± 0.05mb
+

[
+0.0002
−0.001

]

αs

±0.002CKM ± 0.02BRsl
± 0.05λ2 ± 0.19ρ1 ± 0.14fs ± 0.02fu

)

16

inputs



branching ratio

• Theory [Huber,Lunghi,Misiak,Wyler; Huber,Hurth,Lunghi]:

• Experiment [BaBar and Belle]:

Blow
!! = (1.60± 0.51)× 10−6

Bhigh
!! = (4.4± 1.2)× 10−7

Bhigh
ee = (2.1± 0.6)× 10−7

The OPE is an expansion 
in 

Large q2 region: complementary with small q2

• Theory: largest errors (i) expansion in ΛQCD/(mb−
p

q2); (ii) huge mb dependence

Experiment: smaller rate, but higher efficiency

• Both can be reduced / eliminated⇒ uncertainty ∼ 5% (missing NNLL at large q2)

uncertainties suppressed by:
Z m2

B

q20

dΓ(B → Xs!
+!−)

dq2
dq2

Z m2
B

q20

dΓ(B0 → Xu!ν̄)

dq2
dq2

=
|VtbV

∗
ts|

2

|Vub|2
α2

em

8π2
R(q2

0)
1−
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p2
Xs

= (pb − q)2 = m2
b + q2 − 2mbq0

< m2
b + q2 − 2mb

√
q2 =

(
mb −

√
q2

)2

Blow
µµ =

[
1.59± 0.08scale ± 0.06mt ± 0.024C,mc ± 0.015mb ± 0.02αs(MZ)

±0.015CKM ± 0.026BRsl ± 0.08αs/mb

]
× 10−6 = (1.59± 0.14)× 10−6

Blow
ee = (1.64± 0.14)× 10−6

Bhigh
µµ = 2.40× 10−7

(
1 +

[
+0.01
−0.02

]
µ0

+
[
+0.14
−0.06

]
µb
± 0.02mt +

[
+0.006
−0.003

]
C,mc

± 0.05mb

+
[
+0.0002
−0.001

]
αs
± 0.002CKM ± 0.02BRsl ± 0.05λ2 ± 0.19ρ1 ± 0.14fs ± 0.02fu ± 0.05αs/mb

)

= (2.40± 0.7)× 10−7

!



low-q2: FBA

• Integrated observables:

[Huber,Hurth,Lunghi]
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(q2
0)µµ =

[
3.50± 0.10scale ± 0.002mt ± 0.04mc,C ± 0.05mb ± 0.03αs(MZ) ± 0.001λ1 ± 0.01λ2

]
GeV2

= (3.50± 0.12) GeV2

(q2
0)ee = (3.38± 0.11) GeV2

Bin 2 (q2 ∈ [3.5, 6]GeV2)Bin 1 (q2 ∈ [1, 3.5]GeV2) low − q2 (q2 ∈ [1, 6]GeV2)
(
Āµµ

)
bin1

= [−9.1± 0.9]%
(
Āµµ

)
bin2

= [7.8± 0.8]%
(
Āee

)
bin1

= [−8.1± 0.9]%
(
Āµµ

)
bin2

= [8.3± 0.6]%
(
Āµµ

)
low

= [−0.9± 0.9]%

(
Āµµ

)
low

= [−1.5± 0.9]%



low-q2: new observables

d2Γ
dq2dz

=
3
8

[
(1 + z2)HT (q2) + 2zHA(q2) + 2(1− z2)HL(q2)

]

dAFB

dq2
=

3
4
HA

dΓ
dq2

= HT + HL

• Importance of splitting the Forward-Backward asymmetry in two bins:

[Toy analysis: data extrapolated at 1 ab-1, C7 < 0 taken from b→sγ]

[Lee,Ligeti,Stewart,Tackmann]



low-q2: new observables

d2Γ
dq2dz

=
3
8

[
(1 + z2)HT (q2) + 2zHA(q2) + 2(1− z2)HL(q2)

]

dAFB

dq2
=

3
4
HA

dΓ
dq2

= HT + HL

• Importance of splitting the HT and HL:

[Toy analysis: data extrapolated at 1 ab-1, C7 < 0 taken from b→sγ]

[Lee,Ligeti,Stewart,Tackmann]



high-q2: reducing the errors

• New idea: normalize the decay width to the semileptonic B→Xulν rate with 
the same dilepton invariant mass cut:

• Impact of non-perturbative           and             power corrections drastically 
reduced

• In the high-q2 region we find:

1/m2
b 1/m3

b

• The largest source of uncertainty is Vub

R(14.4GeV2) = 2.29× 10−3
(
1± 0.04scale ± 0.02mt ± 0.01C,mc ± 0.006mb ± 0.005αs ± 0.09CKM

±0.003λ2 ± 0.05ρ1 ± 0.03f0
u+fs

± 0.05f0
u−fs

)

= 2.29× 10−3(1± 0.13)

R(s0) =

∫ 1

ŝ0

dŝ
dΓ(B̄ → Xs!+!−)

dŝ
∫ 1

ŝ0

dŝ
dΓ(B̄0 → Xu!ν)

dŝ

[Ligeti,Tackmann]

[Huber,Hurth,Lunghi]

!



high-q2: reducing the errors

[Belle, 87 fb-1, hep-ex/0311048] [BaBar, 383 m ϒ,  arXiv:0708.3702]

• Experiments already positioned to measure B→Xulν with a q2 cut

• Separation of B0 and B+ is important to control WA contributions 



• Use B→Xsγ to constrain C7 and C8:

C7(µ0)/CSM
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Theory:

B(B̄ → Xsγ)exp = (3.52± 0.25)× 10−4

B(B̄ → Xsγ)SM = (3.15± 0.23)× 10−4

Experiment:

model independent analysis



• Use C7 and C8 from B→Xsγ to constrain C9 and C10
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• C7 > 0 requires sizable contributions to C9 and C10

• Reversing the sign of C7 we obtain                                                                                       
hence the SM sign is favored at the 2.7σ level

B(B̄ → Xs!
+!−) = (3.11± 0.22)× 10−6

[Gambino,Haisch,Misiak]

model independent analysis



• Computing aid: Spheno for the RGE of the MSSM and MicrOMEGAs for 
the relic dark matter density

• Effects on C9 and C10 are tiny:

• b→sγ shapes the surviving parameter space:

∣∣C9,10(µ0)/CSM
9,10(µ0)

∣∣ < 0.1

tanβ

C7(µb)

mfv susy



• In the most general MSSM, gluino and chargino diagrams can lead to 
huge contributions to the semileptonic operators:  

b s

Z

!−!+

b̃ s̃

g̃

δd
32 b s

Z

!−!+

t̃ c̃

χ̃−

δu
32

0 < C10(µ0)/CSM
10 (µ0) < 2

0.7 < C9(µ0)/CSM
9 (µ0) < 1.3

susy: mia analysis
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• The C7 > 0 scenario is viable (with some degree of fine tuning)
• More than one mass insertion present at the same time

susy: mia analysis



• Constraints on (23) mass insertions in the down sector

susy: mia analysis

[Ciuchini,Silvestrini]
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FIG. 3: Allowed region in the Re
(

δd
23

)

LL
-Im

(

δd
23

)

LL
plane. In the plots on the left (right), negative

(positive) µ is considered. Plots in the upper (lower) row correspond to tan β = 3 (tan β = 10).

See the text for details.

• For tanβ = 3, we see from the upper row of Fig. 3 that the bound on (δd
23)LL from

Bs− B̄s mixing is competitive with the one from rare decays, while for tanβ = 10 rare

decays give the strongest constraints (lower row of Fig. 3). The bounds on all other

δ’s do not depend on the sign of µ and on the value of tanβ for this choice of SUSY

parameters.

• For LL and LR cases, B → Xsγ and B → Xsl+l− produce bounds with different
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final messages

• Experiments cordially encouraged not to correct for Xs cut

• Treatment of collinear photons?

• Split the FB-asymmetry into two bins ([1,3.5]GeV2 and [3.5,6] GeV2)

• Measure separately HL and HT: Γ ∝ (1+z2) HT + 2 z HA + 2 (1-z2) HL

• Normalize the BR in the high-q2 region to B0→Xulν with the same q2 cut

• Relevant only to constrain non-MFV new physics models


