CKM-angle γ from charged B decays at **BABAR**

V. Tisserand, LAPP-Annecy (CNRS-IN2P3 et Université de Savoie), for the *BABAR* Collaboration, CKM 2008, Roma (Italia), Sept. 9-13.

Why is it difficult to measure γ ?

See T. Gershon's talk

Same $D^{\circ} \equiv [D^{\circ}/\overline{D}^{\circ}]$ final state

- → Measurement of γ using direct CP violation (interference [b→c \Leftrightarrow b→u]):
- 3 various $B^- \rightarrow \widetilde{D}^{(*)0} K^{(*)-}$ charged decays (no time dependence): DK, D*K, and DK*.
- Size of CPV is limited by the size of $|A_{ub}/A_{cb}|$ amplitudes ratio: 3 $r^{(*)}_{(s)B}$ nuisance parameters (~5-30% ?).
- → 3 methods that need a lot of B mesons:
 - <u>GLW:</u> $\tilde{D} = CP$ -eigenstate: many modes, but small asymmetry.
 - <u>ADS: $\widetilde{D} = DCS$: large asymmetry, but very few events.</u>
 - <u>GGSZ</u>: D = Dalitz: better than a mixture of ADS+GLW \Rightarrow large asymmetry in some regions, but strong phases varying other the Dalitz plane.

GLW method : $B^- \rightarrow \tilde{D}^{(*)0}$ [CP-eigenstate] $K^{(*)-}$ and observables from B[±] yields

- Theoretically very clean to determine γ
- Relatively small BFs ~10⁻⁶ (including sec. BFs) <u>STATISTICS LIMITED !</u>

 \Rightarrow small CP asymmetry ($r_{\rm R}$)

Reconstruct <u>D meson in CP-eigenstates</u> (accessible to D^o and D^o), & in many modes (normalize to $D^{(\star)o}$ flavour state decays ($K^-\pi^+$)):

-<u>CP-even</u> (CP+) = D₊ : K⁺K⁻, $\pi^{+}\pi^{-}$

-<u>CP-odd</u> (CP-) = D_: $K^{o}_{s}\pi^{o}$, $K^{o}_{s}\omega[\pi\pi\pi^{o}]$, $K^{o}_{s}\phi[KK]$

Use channels $D^{*\circ}$ to $D^{\circ}\pi^{\circ}/D^{\circ}\gamma$ and K^{*-} to $K^{\circ}_{s}\pi^{-}$

• ratio of BFs: (CP eigenstate/flavor state) (double ratios normalized with $D^{(\star)0}\pi^{-}$ for systematic cancellations)

• direct CPV ($B^+ \leftrightarrow B^-$):

PRD 77, 111102(R) (June 2008)

382x10⁶ BB

- Selection based on m_{ES} and event shape variables.
- Extended max. likelihood fit to ΔE and Cherenkov angle θ_{C} of the prompt track.
- Use of $B^- \rightarrow D^0 \pi^-$ as normalization channel and control sample, and D^0 mass side-bands..
- No $D^{\circ} \rightarrow K^{\circ}{}_{s}\phi$ mode (GGSZ $D^{\circ} \rightarrow K^{\circ}{}_{s}K^{+}K^{-})$

V. Tisserand, LAPP, CKM08

2

2. Not enough sensitivity to γ , but :

most precise D*K GLW measurement.

- Selection based on m_{ES} and event shape variables.
- Extended max. likelihood fit to ΔE and dE/dx + Cherenkov PID of fast track.
- Use of $B^- \rightarrow D^{*o}\pi^-$ as normalization channel and control sample and D^o mass side-bands.
- D*° CP flips for D° π° and D° γ same D° final states (PRD 70, 091503 (2004))

N_{CP+}=244±22

N_{CP}=225±23

N_{Kπ}=1410±57

• x^{*}_{+} compatible with GGSZ and as precise, r^{*}_{B} expected large.

arXiv:0807.2408 hep/ex

GLW : $B^- \rightarrow D^{*o}_{CP}[\rightarrow D^o \pi^o / \gamma] K^-$

$\mathbf{GLW}: \mathbf{B}^{-} \longrightarrow \mathbf{D^{o}}_{\mathbf{CP}}\mathbf{K}^{\star-}[\rightarrow \mathbf{K^{o}}_{\mathbf{S}}\pi^{-}]$

- Selection re-optimized and event shape in Neural Net wrt 2005 (higher eff'cy, bkg. rejection, and stat.)
- (peaking)-bkg. from ΔE and mD^o sidebands.
- CP+ pollution for $K^{o}_{s}(K^{*}K)$ non- $\phi \& K^{o}_{s}(\pi^{*}\pi^{-}\pi^{o})$ non- ω measured in the data.
- Vary by 2π the δ strong phases from S-wave $K\pi$ pairs in K*-[K^o_s π -] decays.

- 1. No Direct CPV seen.
- 2. Precision improved wrt 2005, results confirmed, world's only measurement.

ADS method : $B^{-} \rightarrow \tilde{D}^{(*)0} [K^{+} \pi^{-}]_{D} K^{(*)^{-}}$ and observables from B[±] yields

• Same idea as for GLW, same final state in different $D^{\circ}[\overline{D}^{\circ}/D^{\circ}]$ states:

 $[K^+\pi^-]_D K^-$: Doubly-Cabibbo-Suppressed (DCS) decays instead of CP-eigenstate.

- Small BFs(~10⁻⁶), but amplitudes ~ comparable in size: expect larger CPV!
- Count B candidates with opposite sign K!

2 observables

• ratio of BFs: (Wrong Sign $D^{o} \rightarrow \mathbf{K}^{+}\pi^{-}/\text{Right Sign } D^{o} \rightarrow \mathbf{K}^{-}\pi^{+}$)

$$\mathbf{R}_{ADS} = \frac{\Gamma([\mathbf{K}^{+}\pi^{-}]K^{-}) + \Gamma([\mathbf{K}^{-}\pi^{+}]K^{+})}{\Gamma([K^{-}\pi^{+}]K^{-}) + \Gamma([K^{+}\pi^{-}]K^{+})} = \mathbf{r}_{B}^{2} + \mathbf{r}_{D}^{2} + 2\mathbf{r}_{B}\mathbf{r}_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)$$

$$\mathbf{good sensitivity to } \mathbf{r}_{B}^{2} > \mathbf{r}_{D}^{2}$$

$$\mathbf{e} \operatorname{\underline{CPV:}} \text{ from } \mathbf{B}^{*} \leftrightarrow \mathbf{B}^{-} \operatorname{\underline{direct}} \operatorname{asymmetry in yield if enough } \mathbf{ADS} \text{ events seen.}$$

$$\mathbf{A}_{ADS} \equiv \frac{\Gamma[\mathbf{K}^{+}\pi^{-}]K^{-}) - \Gamma([\mathbf{K}^{-}\pi^{+}]K^{+})}{\Gamma[\mathbf{K}^{+}\pi^{-}]K^{-}) + \Gamma([\mathbf{K}^{-}\pi^{+}]K^{+})} = \frac{2 \mathbf{r}_{B} \mathbf{r}_{D} \sin(\delta_{B} + \delta_{D}) \sin(\gamma)}{\mathbf{R}_{ADS}}$$

LADS

 $379 \times 10^6 \text{ B}\overline{\text{B}}$

V. Tisserand, LAPP, CKM08

 \rightarrow With current statistics is not possible to constraint r_B with R_{ADS} measurements alone

(and almost nothing for A_{ADS}).

 $379 \times 10^6 \text{ B}\overline{\text{B}}$

Dalitz GGSZ : $B^- \rightarrow \widetilde{D}^{(*)0}[K^0_{s}h^+h^-]_{D}K^{(*)-}$, $h=\pi/K$

• $D^{\circ} \rightarrow K^{\circ}{}_{s}[\pi^{+}\pi^{-}/K^{+}K^{-}]$ 3-body self conjug. final states accessible through many different decays. Only $(\pi/K)^{\pm}$: clean, efficient, and reasonable BF([K^{\circ}{}_{s}\pi\pi]_{D}K^{-}) \approx 10^{-5} (×10 D°_{CP}, BF(K°_s $\pi\pi$)/BF(K°_sKK)~6).

→ need <u>Dalitz structure analysis</u>: $D^{\circ}/\overline{D}^{\circ}$ decay amplitudes $A_{D-/+}$ to separate interferences between resonances \Rightarrow precise modelization.

 $m_{\pm}^{2} = m^{2} (K_{s}^{0} h^{\pm})$

schematic view of interference $[b \rightarrow c \Leftrightarrow b \rightarrow u]$:

Dalitz GGSZ : $B^- \rightarrow \widetilde{D}^{(\star)0} [K_{s}^{0}h^+h^-]_{D}K^{(\star)-}, h=\pi/K$

• Extract γ from Dalitz-plot distribution of D^o daughters using Cartesian coordinates:

$$\begin{split} & \Gamma^{(\star)}(\mathbf{B}^{-/\star})_{-/\star} \propto |\mathbf{A}_{D^{-/\star}}|^2 + \mathbf{r}^{(\star)}_{(\mathfrak{s})B^2} |\mathbf{A}_{D^{+/\star}}|^2 + \\ & 2\lambda \times \left[\mathbf{X}^{(\star)}_{(\mathfrak{s})^{-/\star}} \operatorname{Re}\{\mathbf{A}_{D^{-/\star}}\mathbf{A}^{\star}_{D^{+/\star}}\} + \mathbf{y}^{(\star)}_{(\mathfrak{s})^{-/\star}} \operatorname{Im}\{\mathbf{A}_{D^{-/\star}}\mathbf{A}^{\star}_{D^{+/\star}}\} \right] \\ & \mathbf{x}_{\pm} = \mathbf{r}_{\mathbf{B}} \cos(\delta_B \pm \gamma) \\ & \mathbf{y}_{\pm} = \mathbf{r}_{\mathbf{B}} \sin(\delta_B \pm \gamma) \\ & \mathbf{r}_{\mathbf{B}}^2 = \mathbf{x}_{\pm}^2 + \mathbf{y}_{\pm}^2 \end{split} \qquad \lambda = +1 \text{ for } \mathbf{B} \rightarrow \mathbf{D}^{\circ}\mathbf{K}, \mathbf{D}^{\star\circ}[\mathbf{D}^{\circ}\pi^{\circ}], \mathbf{D}^{\circ}\mathbf{K}^{\star} \\ & -1 \text{ for } \mathbf{B} \rightarrow \mathbf{D}^{\star\circ}[\mathbf{D}^{\circ}\gamma]\mathbf{K} \end{split}$$

• Experimentally:

PRD78, 034023 (2008) 383x10⁶ BB

- $A_{D^{-/+}}$ determined from high stat./purity $c\overline{c}$ data control samples: $D^{*+} \rightarrow D^{o}\pi^{+}$, $D^{o} \rightarrow K^{o}{}_{s}h^{+}h^{-}$ \Rightarrow New Dalitz models with coherent sum of quasi-2-body amplitudes. <u>Note:</u> additional phase of D^o decays varying over the Dalitz plane (\neq from ADS/GLW): model systematic uncertainty on γ ...
- Eff'cy selections improved (+ optimized event shape treatment).
- max. likelihood fit (m_{ES}, ΔE, and evt. shape variable) to extract yields and PDF params.
 + using B→D^{(*)o}π⁻ and D^oa⁻₁ control samples.

Dalitz analysis : $D^{o}/\overline{D}^{o} \rightarrow K^{o}{}_{s}h^{+}h^{-}$, $h=\pi/K$

• $K^{o}_{s}\pi\pi$: 10 BW resonances (isobar) for P(dominant)-D waves + K-matrix for $\pi\pi$ (first >4 σ evidence !) and K π (LASS) S-waves (K-matrix formalism deals with broad, overlapping, multi-channels resonances).

• $K_{s}^{\circ}KK$: isobar model used for the first time ($K_{s}^{\circ}a_{o}(980)$) S-wave and $K_{s}^{\circ}\phi(1020)$ P-waves dominate).

data (351 fb⁻¹)

PRD78, 034023 (2008)

383x10⁶ BB

Fit results: 12 (3x4) Cartesian coordinates

 $|z_{B+}-z_{B-}| \neq 0$ direct CPV@ 3.0 σ combined

- Similar precision between *BABAR* and BELLE Dalitz, and *BABAR* GLW for x_{\pm}
- Overall good consistency: GLW helps in reducing uncertainties on γ within a global comb.

Dalitz: γ results for $B^- \rightarrow D^{(*)\circ}K^{(*)-}$ 383x10⁶ $B\overline{B}$

 \rightarrow Statistics limited, small r_B~10% favored (limits sensitivity to γ).

CKM-angle γ from charged B decays at BABAR

PRL99, 251801 (2007)

324x10⁶ BB

Dalitz for
$$B^- \rightarrow \widetilde{D^o}[\pi^- \pi^+ \pi^o] K^-$$

- → Compared to $D^{\circ}[K^{\circ}_{s}\pi\pi]K^{-}$:
- ~1/3 signal rate: (170±29) signal evts.

• larger background and different Dalitz struct. [ρ (770-1700) π , f₀(980-1710) π ...].

→ due to significant nonlinear correlations we use polar coordinates, instead of Cartesian, (and r_B , δ_B and γ), naturally (decay yields: $\Gamma(B^{\pm}) \propto 1 + (\rho_{\pm})^2 - (x^0)^2$) defined as:

$$\begin{split} \rho_{\pm} &\equiv \sqrt{(x_{\pm} - x^0)^2 + y_{\pm}^2} \\ \theta_{\pm} &\equiv \operatorname{atan}\left(\frac{y_{\pm}}{x_{\pm} - x^0}\right) \\ x^0 &\equiv \int A_D(m^-, m^+) \bar{A}_D(m^+, m^-) dm^- dm^+ = 0.85 \end{split}$$

		±stat.±syst.		
ρ_	=	$0.72 \pm 0.11 \pm 0.06$		
θ_{-}	=	$(173 \pm 42 \pm 19)^{\circ}$		
ρ_+	=	$0.75 \pm 0.11 \pm 0.06$		
θ_+	=	$(147 \pm 23 \pm 13)^{\circ}$		

Dalitz model dominates for syst.

Conclusions and **perspectives**

- \rightarrow Measure γ at B-Factories ~ <u>impossible mission few years ago</u> !...
- → <u>Now it's possible</u>, but we are not yet there to precision era!
- → Using direct CPV and interference in charged B^{\pm} decays to $D^{(*)0}K^{(*)\pm}$:
 - 3 <u>clean theoretical methods</u> \sim all the machinery in place \Rightarrow <u>Dalitz is still the most powerful</u>
 - Need much more data/channels (Γ_B) \Rightarrow wait for much more statistics & update with existing one !
 - Need model independent approach for Dalitz (input from CLEO-C) at higher stat.

BABAR GGSZ+GLW alone: $\gamma = (62^{+28}_{-19})^{\circ}, \ [29, 119]^{\circ}$

$$\begin{aligned} \mathbf{r_B(DK)} &= (9.2^{+2.7}_{-2.8})\%, \ [3.5, 14.8]\% \\ \mathbf{r_B(D^*K)} &= (10.8^{+5.2}_{-4.1})\%, \ [2.0, 22.6]\% \\ & \mathbf{\kappa r_B(DK^*)} &= (17.9^{+8.7}_{-9.6})\%, \ < 35.3\% \end{aligned}$$

{1σ, @ 95% C.L.} **direct CPV@** 3.3**O**

Courtesy average from N. Lopez-March, F. Martinez-Vidal

Backup slides

 γ from interference in charged $B^- \rightarrow \widetilde{D}^{(*)} K^{(*)}$ decave Same $\overline{D}^{(*)0} \equiv \left[\frac{D^{(*)0}}{\overline{D}^{(*)0}} \right]$ final states (Cabibbo & color)-suppressed Cabibbo-"favored" uub <u>D</u>(*)0 **K**(*)⁻ B- \bar{c} b s \bar{u} B-**D**(*)0 **K**(*)⁻ \bar{u} \bar{u} $A_{\mu}(\bar{D}^{(\star)}K^{(\star)}) \propto \lambda^3 \sqrt{\bar{\eta}^2 + \bar{\rho}^2} e^{i(\delta_B^{-\gamma})}$ $\mathbf{A}_{cb}(\mathbf{D}^{(\star)}\mathbf{K}^{(\star)}) \propto \lambda^3$ relative strong & weak phases $\mathbf{A}_{tot} = \mathbf{A}_{cb} + \mathbf{A}_{ub}$ $\propto [(1 \pm \mathbf{r}_{B} \mathbf{e}^{i(\delta_{B}^{-\gamma})})]$ Size of CP asymmetry: r_B is the critical parameter Cabibbo and color suppression $r_B \equiv |A/A| \sim 0.05 - 0.30$ PLB 557, 198(2003) $\equiv (1 \pm \mathbf{z})$ $r_B \text{ small} \Rightarrow$ small experimental sensitivity to γ (Z: Cartesian coordinates (precision as $1/r_{\rm B}$) if $D^{\circ}/\overline{D}^{\circ}$ is CP eigenstate)

Methods to extract γ in $B^{\pm} \rightarrow \widetilde{D}^{(\star)o} K^{(\star)^{\pm}}$ decays

Use of direct CPV in B^{\pm} [b \rightarrow c \Leftrightarrow b \rightarrow u] interference

 \rightarrow one (δ_B , r_B) pair of NUISANCE parameters for each 3 DK, D*K or DK* channel

 \Rightarrow 7 unknowns parameters to measure : γ , (δ_B , r_B)_{DK}, (δ_B^* , r_B^*)_{D*K}, & (δ_{sB} , r_{sB})_{DK*}

Same $\widetilde{D}^{\circ} = [D^{\circ}/\overline{D}^{\circ}] \rightarrow \text{various final states to enhance the } V_{ub}/V_{cb} \text{ interference}$

Neglect D°-D° mixing and CPV therein (< or ~1%)</p>

GLW method : $B^- \rightarrow \tilde{D}^{(*)o}$ [CP-eigenstate] $_{D}K^{(*)-}$

- <u>Theoretically very clean</u> to determine γ (but 8 fold-ambiguities)
- Relatively small BFs ~10⁻⁶ (including sec. BFs) STATISTICS LIMITED !

 \Rightarrow small CP asymmetry (**r**_B=?)

• Reconstruct <u>D</u> meson in <u>CP-eigenstates</u> (accessible to D^o and \overline{D}^{o}), & in many modes (normalize to D^{(*)o} flavour state decays (K⁻ π^+)):

 $-\underline{\text{CP-even}}(\text{CP+}) \equiv \text{D}_{+}: \text{K}^{+}\text{K}^{-}, \pi^{+}\pi^{-}$

-<u>CP-odd</u> (CP-) = D_: $K^{o}_{s}\pi^{o}$, $K^{o}_{s}\omega[\pi\pi\pi^{o}]$, $K^{o}_{s}\phi[KK]$

Use channels $D^{*\circ}$ to $D^{\circ}\pi^{\circ}/D^{\circ}\gamma$ and K^{*-} to $K^{\circ}{}_{s}\pi^{-}$

Let's define the Cartesian coordinates $(X_{\pm}, y_{\pm}) = (Re, Jm) Z_{\pm}$ (another parametrisation, naturally related to the decay amplitudes $A_{ub}(B^{\pm})$):

$$\mathbf{x}_{\pm} = \mathbf{r}_{\mathbf{B}}\mathbf{cos}(\delta_B \pm \gamma) = \frac{\mathbf{R}_{\mathbf{CP}+}(\mathbf{1} \mp \mathbf{A}_{\mathbf{CP}+}) - \mathbf{R}_{\mathbf{CP}-}(\mathbf{1} \mp \mathbf{A}_{\mathbf{CP}-})}{4}$$

 $\mathbf{y}_{\pm} = \mathbf{r_Bsin}(\delta_B \pm \gamma) \; \Rightarrow$ Not accessible from GLW observables

So that:
$$r_B^2 = rac{R_{CP+} + R_{CP-} - 2}{2} = x_{\pm}^2 + y_{\pm}^2$$

CKM-angle γ from charged B decays at *BABAR*

 $\mathbf{GLW}:\mathbf{B}^{-}\to\mathbf{D^{o}}_{(\mathbf{CP})}\mathbf{K}^{-}$

- Selection based on m_{ES} and event shape variables.
- Extended max. likelihood fit to ΔE and Cherenkov angle θ_{C} of the prompt track.
- Use of $B^- \rightarrow D^0 \pi^-$ as normalization channel and control sample, and D^0 mass side-bands..
- No D° \rightarrow K°_s ϕ mode (no overlap with GGSZ D° \rightarrow K°_sK⁺K⁻ measurement)
- Accounts for CP+ contamination for $K_s \omega(\pi \pi \pi^o)$ from helicity meas. in data, detector charge asymmetry, DK/D π eff'cy \neq , peaking background, PDFs, R_{CP} from double ratio R^{\pm}/R ...

GLW : $B^- \rightarrow D^{*o}_{(CP)}K^-$, $D^{*o} \rightarrow D^o \pi^o / \gamma$

arXiv:0807.2408 hep/ex (July 2008), submitted to PRD

383x10⁶ BB

0.1

- Selection based on m_{FS} and event shape variables.
- Extended max. likelihood fit to AE and dE/dx + Cherenkov PID of fast track.
- Use of $B^- \rightarrow D^{*0}\pi^-$ as normalization channel and control sample and D^0 mass side-bands.
- D*° CP flips for D° π° and D° γ same D° final states (PRD 70, 091503 (2004))
- Accounts for CP+ contamination for $K^{o}{}_{s}\omega(\pi\pi\pi^{o})\&K^{o}{}_{s}\phi(KK)$ (S waves), detector charge asymmetry, peaking background, PDFs, $D^*\pi^-/\rho^-$ BFs, $\pi^o \Leftrightarrow \gamma$ cross-feed, R_{CP} from double ratio ...

($K^{o}_{s} \Phi$ removed for Cartesian coords.)

 $\mathbf{A}^*_{\mathbf{CP}+}$

 $\mathbf{A}^*_{\mathbf{CP}-}$

 R^*_{CP+}

 $\mathbf{R}^*_{\mathbf{CP}-}$

 \mathbf{x}_{+}^{*}

GLW : status as of CKMO8

→ BABAR has the most precise GLW measurements (Belle uses 275x10⁶ BB wrt 383x10⁶), CDF is a new comer since FPCP'08. And DK*- from BABAR with 232x10⁶ BB only...

→ With current statistics it is not possible to constraint γ with GLW measurements alone, but help significantly to improve global constraint on γ and \mathbf{r}_{B} .

V. Tisserand, LAPP, CKM08

CKM-angle γ from charged B decays at *BABAR*

ADS method : B⁻→D^(*)⁰[K⁺π⁻]_DK^{(*)-} • Same idea as for GLW, same final state in different D⁰ [D⁰/D⁰] states: [K⁺π⁻]_DK⁻ :Doubly-Cabibbo-Suppressed (DCS) decays instead of CP-eigenstate. Suppressed (V_{ub}) B⁻→D⁰K⁻ K⁺π⁻</sup> Favored B⁻→D⁰K⁻ K⁺π⁻</sup> Favored (Right-Sign)

Small BFs(~10⁻⁶), but <u>amplitudes ~ comparable in size</u>: expect larger CPV!

Count B candidates with opposite sign K !

$$\mathbf{A} (\mathbf{B}^{-} \rightarrow [\mathbf{K}^{+} \pi^{-}]_{\mathbf{D}} \mathbf{K}^{-}) \propto \mathbf{r}_{\mathbf{B}} \mathbf{e}^{\mathbf{i}(\delta_{\mathbf{B}} - \gamma)} + \mathbf{r}_{\mathbf{D}} \mathbf{e}^{-\mathbf{i}\delta_{\mathbf{D}}}$$

$$\mathbf{r}_{\mathbf{D}}^{2} = \left| \frac{A(D^{0} \rightarrow K^{+} \pi^{-})}{A(D^{0} \rightarrow K^{-} \pi^{+})} \right|^{2} = (0.365 \pm 0.021)\% \quad \text{PLB 592,1 (PDG 2004)}$$

$$\mathbf{P}_{\mathbf{D}} : \mathbf{D} \text{ decay strong phase unknown (scan all possible values).}$$

ADS : observables **A** (B⁻→[K⁺π⁻]_DK⁻) ∝ $\mathbf{r}_{B}\mathbf{e}^{i(\delta_{B}} + \mathbf{r}_{D}\mathbf{e}^{-i\delta_{D}}$ $B^{-} \rightarrow B^{+} \Rightarrow -\gamma \rightarrow +\gamma$, $K^{-} \leftrightarrow K^{+}$, $K^{+} \leftrightarrow K^{-}$ 2 observables • ratio of BFs: (Wrong Sign $D^{o} \rightarrow K^{+}\pi^{-}/\text{Right Sign } D^{o} \rightarrow K^{-}\pi^{+}$) $\mathbf{R}_{\mathbf{ADS}} \equiv \frac{\Gamma([\mathbf{K}^+\pi^-]K^-) + \Gamma([\mathbf{K}^-\pi^+]K^+)}{\Gamma([K^-\pi^+]K^-) + \Gamma([K^+\pi^-]K^+)} = \mathbf{r}_{\mathbf{B}}^2 + \mathbf{r}_{\mathbf{D}}^2 + 2\mathbf{r}_{\mathbf{B}}\mathbf{r}_{\mathbf{D}}\cos(\delta_{\mathbf{B}} + \delta_{\mathbf{D}})\cos(\gamma)$ good sensitivity to $r_{\rm R}^2$ • direct ACPV: $B^+ \leftrightarrow B^-$ direct asymmetry in yield if enough events seen. $\mathbf{A}_{\mathbf{ADS}} \equiv \frac{\Gamma[\mathbf{K}^+\pi^-]K^-) - \Gamma([\mathbf{K}^-\pi^+]K^+)}{\Gamma[\mathbf{K}^+\pi^-]K^-) + \Gamma([\mathbf{K}^-\pi^+]K^+)} = \frac{2 \mathbf{r}_{\mathbf{B}} \mathbf{r}_{\mathbf{D}} \sin(\delta_{\mathbf{B}} + \delta_{\mathbf{D}}) \sin(\gamma)}{\mathbf{R}_{\mathbf{ADS}}}$

ADS D^(*)°[K⁺π⁻]K⁻ results

PRD 72, 032004 (2005) 232x10⁶ BB

 $\begin{array}{l} \hline \textbf{No significant signal yet} \\ \Rightarrow \quad only (Bayesian) limits on \\ \hline \textbf{R}_{ADS} \text{ and } \textbf{r}^{(\star)}{}_{B} \\ \textbf{(using: } |\cos(\delta^{(\star)}{}_{B}+\delta_{D})\cos\gamma| < 1 \\ \text{ and upper limits for } \gamma=0^{\circ}, \ \delta^{(\star)}=180^{\circ} \\ \text{ or } \gamma=180^{\circ}, \ \delta^{(\star)}=0^{\circ} \text{ worst case scenario maximal} \\ \textbf{b} \rightarrow \textbf{c and } \textbf{b} \rightarrow \textbf{u} \text{ destructive interference, } \delta^{(\star)}=\delta_{D}+\delta^{(\star)}{}_{B} \end{pmatrix}$

	R _{ADS}	"r _B "	
D∘K	< <u>0.029</u> 90% prob	r _B <0.23 90% prob	
D*⁰K	< <mark>0.023</mark> (D ^{*o} →D ^o π ^o) <0.045 (D ^{*o} →D ^o γ) 90% prob	(r* _B)2<(0.16)2 90% prob + Bondar & Gershon PRD70,091503(2004)	

ADS D°[K⁺π⁻π^o]K⁻ results

 $\overrightarrow{s} = (m_{K\pi}^2, m_{K\pi^0}^2)$

- Similar to previous analyses with DCS $D^{o} \rightarrow K^{+}\pi^{-}\pi^{o}$
- Complication for γ extraction from $|A_{\rm D}|,\,\delta_{\rm D}$ varying across the D° Dalitz plane

 $\mathbf{R}_{\mathrm{ADS}} \equiv \mathbf{r}_{\mathrm{B}}^{2} + \mathbf{r}_{\mathrm{D}}^{2} + 2\mathbf{r}_{\mathrm{B}}\mathbf{r}_{\mathrm{D}}\mathbf{C}\mathrm{cos}(\boldsymbol{\gamma}) \qquad \mathbf{C} = \frac{\int A_{D}(\overrightarrow{s})\overline{A}_{D}(\overrightarrow{s})\mathrm{cos}(\delta_{\mathrm{D}}(\overrightarrow{s}) + \delta_{\mathrm{B}}(\overrightarrow{s}))\mathrm{d}\overrightarrow{s}}{\sqrt{\int |A_{D}(\overrightarrow{s})|^{2}d\overrightarrow{s}}\sqrt{\int |\overline{A}_{D}(\overrightarrow{s})|^{2}d\overrightarrow{s}}}$

- C is unknown, |C|≤1
- $r_D^2 = (0.214 \pm 0.011)\%$ PRL 97, 221803 (2005)
- Compared to $K\pi$: more background but higher BF and smaller r_D (better r_B sensitivity)
- Similar sensitivity to r_B (limit on R_{ADS} using $|C\cos\gamma| \le 1$)

Dalitz GGSZ : $B^- \rightarrow \widetilde{D}^{(*)o}[K^o_{,h^+h^-}]_{D}K^{(*)^-}$, $h=\pi/K$

• $D^{\circ} \rightarrow K^{\circ}{}_{s}[\pi^{+}\pi^{-}/K^{+}K^{-}]$ 3-body self conjug. final states accessible through many different decays. Only $(\pi/K)^{\pm}$: clean, efficient, and reasonable BF([K^{\circ}{}_{s}\pi\pi]_{D}K^{-}) \approx 10^{-5} (×10 D°_{CP}, BF(K°_s $\pi\pi$)/BF(K°_sKK)~6).

→ need <u>Dalitz structure analysis</u>: $D^{\circ}/\overline{D}^{\circ}$ decay amplitudes $A_{D^{-/+}}$ to separate interferences between resonances \Rightarrow precise modelization. $m_{\pm}^{2} = m^{2} (K_{s}^{\circ} h^{\pm})$

PRD78, 034023 (2008)

Fit parameters $B^- \rightarrow D^{(*)0} K^{(*)-}$

$383x10^6 B\overline{B}$

V. Tisserand, LAPP, CKM08

CKM-angle γ from charged B decays at BABAR

Main systematic errors Neus Lopez-March APS08

Experimental syst.

- \circ m_{ES}, Δ E, Fisher PDF's shapes
- Fractions of D⁰ in the backg
- Background Dalitz shape
- Efficiency in the Dalitz plot
- Cross feed(D⁰γ-D⁰π⁰)
- CPV in Dπ and BB bkg
- Charge flavor correlation
- Non-K* decays ($B^- \rightarrow D^0 K_s^0 \pi$)

Dalitz model

- used alternative models for K_sππ and K_sKK, where the resonances are described with different parametrizations or removed. (e.g: different solution of the K-matrix to describe ππ S-wave, different parametrization to describe K₀*(1430), ...)
- Dalitz efficiency
- Bkg Dalitz shape
- ... (see Diego Milanes talk)

Frequentistic method

Neus Lopez-March APS08

Accounts for unphysical regions (r_B+≠r_B-) of parameter space (Feldman-Cousins)
 1D intervals CL

V. Tisserand, LAPP, CKM08

Component	0	ø (deg)	Fraction (%)	
$\frac{V^*(802)^-}{V^*(802)^-}$	$\frac{u_r}{1.740 \pm 0.010}$	$\frac{\varphi_r (ueg)}{130.0 \pm 0.3}$	11200000000000000000000000000000000000	
$K^{*}(1430)^{-}$	1.740 ± 0.010 8.2 ± 0.7	159.0 ± 0.3 153 ± 8	35.7 ± 2.8 10.2 ± 1.5	
$K_0(1430) = K^*(1430)^{-1}$	0.2 ± 0.7 1 410 ± 0.022	100 ± 0 128 4 ± 1.0	10.2 ± 1.0 2.2 ± 1.6	C A K [*] π
$\Lambda_2(1430)$ $V^*(1680)^-$	1.410 ± 0.022 1.46 \perp 0.10	130.4 ± 1.0 174 ± 4	2.2 ± 1.0	
$\frac{K(1080)}{K^*(002)^+}$	1.40 ± 0.10	$-1/4 \pm 4$	0.7 ± 1.9	J
$K^{+}(892)^{+}$	0.158 ± 0.003	-42.7 ± 1.2	0.46 ± 0.23	1
$K_0^{+}(1430)^+$	0.32 ± 0.06	143 ± 11	< 0.05	
$K_2^*(1430)^+$	0.091 ± 0.016	85 ± 11	< 0.12	JUCSICI
$ ho(770)^{0}$	1	0	21.0 ± 1.6	η ππ P D
$\omega(782)$	0.0527 ± 0.0007	126.5 ± 0.9	0.9 ± 1.0	
$f_2(1270)$	0.606 ± 0.026	157.4 ± 2.2	0.6 ± 0.7	J waves
β_1	9.3 ± 0.4	-78.7 ± 1.6		
β_2	10.89 ± 0.26	-159.1 ± 2.6		
β_3	24.2 ± 2.0	168 ± 4		
β_4	9.16 ± 0.24	90.5 ± 2.6		_
f_{11}^{prod}	7.94 ± 0.26	73.9 ± 1.1		ππ S- wave
$f_{12}^{'\mathrm{prod}}$	2.0 ± 0.3	-18 ± 9		(K-matrix)
$f_{13}^{'\mathrm{prod}}$	5.1 ± 0.3	33 ± 3		,
$f_{14}^{'\mathrm{prod}}$	3.23 ± 0.18	4.8 ± 2.5		
s_0^{prod}	-0.07 :	-0.07 ± 0.03		
$\pi\pi$ S-wave			11.9 ± 2.6	
$M (\text{GeV}/c^2)$	1.463 ± 0.002			
$\Gamma (\text{GeV}/c^2)$	0.233 ± 0.005			
F	0.80 ± 0.09			Kπ S- wave
ϕ_F	2.33 ± 0.13			KIT 5 WUVC
R	1			
ϕ_R	-5.31 ± 0.04			
a	1.07 ± 0.11			
r	-1.8	± 0.3		

Component	a_r	$\phi_r \; (\mathrm{deg})$	Fraction (%)
$K_{S}^{0}a_{0}(980)^{0}$	1	0	55.8
$K_{S}^{0}\phi(1020)$	0.227 ± 0.005	-56.2 ± 1.0	44.9
$K_{S}^{0}f_{0}(1370)$	0.04 ± 0.06	-2 ± 80	0.1
$K_{S}^{0}f_{2}(1270)$	0.261 ± 0.020	-9 ± 6	0.3
$K_{S}^{0}a_{0}(1450)^{0}$	0.65 ± 0.09	-95 ± 10	12.6
$K^{-}a_{0}(980)^{+}$	0.562 ± 0.015	179 ± 3	16.0
$K^{-}a_{0}(1450)^{+}$	0.84 ± 0.04	97 ± 4	21.8
$K^+a_0(980)^-$	0.118 ± 0.015	138 ± 7	0.7

