The CKM angle y from neutral B decays in BaBar

Outline

- The CKM angle γ and the $r_{_{\rm B}}$ ratios
- Some news on $sin(2\beta + \gamma)$ from $B \rightarrow D^{(*)\mp} \Pi^{\pm}(\rho^{\pm})$
- Time dependent Dalitz analysis of $B \rightarrow D^{\mp} K^0 \Pi^{\pm}$ decays for the determination of $2\beta + \gamma$
- The $B^0 \rightarrow D^0 K^{*0}$ system
 - ADS analysis of $B^0 \rightarrow D^0 K^{*0}$ decays for the determination of the ratio $r_s = |A(b \rightarrow u)| / |A(b \rightarrow c)|$
 - Dalitz analysis of $B^0 {\rightarrow} D^0 K^{*0}$ decays for the determination of γ

Conclusions

The CKM angle y

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 (\bar{\rho} - (i\bar{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 (1 - \bar{\rho} - (i\bar{\eta}) & -A\lambda^2 & 1 \\ A\lambda^3 (1 - \bar{\rho} - (i\bar{\eta}) & -A\lambda^2 & 1 \\ \lambda \sim 0.22 , A \sim 0.8 \\ \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} & \gamma = \arg\{-\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*}\}$$

In Wolfenstein parametrization, $V_{ub} = \sqrt{\rho^2 + \eta^2} e^{-i\gamma} \rightarrow \gamma$ is the phase of V_{ub}^* . The angle determined exploiting the interference between b \rightarrow u and b \rightarrow c transitions in B \rightarrow D π and B \rightarrow DK decays

Interference scheme

Interference in the B \rightarrow D π and B \rightarrow DK system allows the determination of γ

$$|A_{1}+A_{2}e^{i\phi}|^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\phi)$$

$$D^{0}h^{0} \qquad A(\overline{D}^{0} \rightarrow f)$$

$$V_{cb} \qquad + \text{strong phases} \qquad [f]h^{0} \qquad \text{interference} \\ \propto \cos(\delta+\gamma) \\ \sim r_{B}e^{i\gamma} \qquad D^{0}h^{0} \qquad A(D^{0} \rightarrow f) \qquad (\propto \cos(\delta-\gamma) \text{ for } \overline{B}^{0})$$

Main characters: γ , $r_{_{\rm B}}$, δ

Sensitivity to γ is driven by the ratio $\mathbf{r}_{_{\mathbf{B}}} = |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{u})| / |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{c})|$ (channel-dependent).

sin($2\beta + \gamma$) from $B \rightarrow D^{(*)\mp}\pi t'(\rho^{\pm})$: some news...

Relative weak phase within Cabibbo-favoured amplitude ($B^0 \rightarrow D^-\pi^+$) and Cabibbosuppressed ($B^0 \rightarrow D^+\pi^-$) one gives sensitivity to γ . When combined with the B_d mixing phase $\rightarrow 2\beta + \gamma$.

Size of CP violating effect proportional to $r_{D\pi} = |A(B^0 \rightarrow D^+\pi^-)|/|A(B^0 \rightarrow D^-\pi^+)| \sim 0.02$. Assuming SU(3) and neglecting annihilation contributions, one can estimate $BR(B^0 \rightarrow D^{(*)+}\pi^-(\rho^-))$ and r_{D} ratios from $BR(B^0 \rightarrow D_{c}^{(*)+}\pi^-(\rho^-))$

New Babar measurement (Phys.Rev.D78:032005,2008):

• tests the hypothesis of negligible annihilation (from $B^0 \rightarrow D_s^- K^+ BR$) contribution • measures:

$$BR(B^{0} \rightarrow D_{s}^{+} \pi^{-}) = (2.5 \pm 0.4 \pm 0.2) 10^{-5}$$

$$BR(B^{0} \rightarrow D_{s}^{*+} \pi^{-}) = (2.6^{+0.5}_{-0.4} \pm 0.2) 10^{-5}$$

$$BR(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.8} \pm 0.3) 10^{-5}$$

$$SU(3)$$
no annihilation
$$f_{D(*)s}/f_{D(*)} = 1.24 \pm 0.07$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.28} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_{s}^{+} \rho^{-}) = (1.1^{+0.9}_{-0.27} \pm 0.3) 10^{-5}$$

$$R(B^{0} \rightarrow D_$$

y in neutral $B \rightarrow DK$ decays

Relative weak phase between V_{ub} and V_{cb} CKM elements, studied in the B \rightarrow DK system, in the interference between b \rightarrow c and b \rightarrow u transitions when both the B0 and B0bar decay to the same final state.

The B0 and B0bar mix, time dependent analyses, sensitivity to $(2\beta + \gamma)$ If the flavour of the neutral B can be determined, sensitivity to γ

the r_B ratios

Sensitivity to γ in each channel driven by the ratio $\mathbf{r}_{\mathbf{B}} = |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{u})| / |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{c})|$

$$r_{B}(D^{0}K^{+}) = \frac{|A(B^{+} \to D^{0}K^{+})|}{|A(B^{+} \to \overline{D^{0}}K^{+})|} = \frac{|V_{cs}V_{ub}^{*}|}{|V_{us}V_{cb}^{*}|} \frac{|\bar{C} + A|}{|T + C|} \text{T tree} C, \bar{C} \text{ colour-suppressed} A \text{ annihilation} \\ r_{B}(D^{0}K^{0}) = \frac{|A(B^{0} \to D^{0}K^{0})|}{|A(B^{0} \to \overline{D^{0}}K^{0})|} = \frac{|V_{cs}V_{ub}^{*}|}{|V_{us}V_{cb}^{*}|} \frac{|\bar{C}|}{|C|} \text{T here} C, \bar{C} \text{ colour-suppressed} A \text{ annihilation} \\ Hadronic elements, complex quantities. \\ |C|/|T| \sim 0.3 \\ |A|/|C| \sim 0.2 \end{bmatrix}$$

For the B⁺ \rightarrow D^{(*)0}K⁺, the r_B ratio is of the order ~0.1 (in amplitude!) For the B⁰ \rightarrow D^{(*)0}K^{(*)0}, the r_B ratio is expected to be of the order ~0.4 **Need to be measured!**

Time dependent Dalitz plot analysis of $B \rightarrow D^{\mp} K^0 \pi^{\pm}$ Phys. Rev. D77: 071102, 2008

D**⁰[Dπ]K⁰ states, interference between b→u and b→c transitions through the mixing
one B fully reconstructed in D[∓]K⁰π[±], the flavour of the other one identified at decay
three-body B decay: 2β+γ (2-fold ambiguity) from analysis of Dalitz distribution (x) as a function of proper time difference Δt.
Likelihood:

$$\begin{split} P(\vec{x},\Delta t,\xi,\eta) &= \frac{A_c^2(\vec{x}) + A_u^2(\vec{x})}{2} \frac{e^{\frac{-|\Delta t|}{\tau_b}}}{4\tau_B} \{ 1 - \eta \xi \, C(\vec{x}) \cos(\Delta m_d \Delta t) + \xi \, S_\eta(\vec{x}) \sin(\Delta m_d \Delta t) \} \\ S_\eta(\vec{x}) &= \frac{2 \, Im(A_c(\vec{x}) A_u(\vec{x}) \, e^{i \frac{(2\beta + \gamma)}{2} + \eta \, i(\Phi_c(\vec{x}) - \Phi_u(\vec{x}))})}{A_c^2(\vec{x}) + A_u^2(\vec{x})} \qquad C(\vec{x}) &= \frac{A_c^2(\vec{x}) - A_u^2(\vec{x})}{A_c^2(\vec{x}) + A_u^2(\vec{x})} \end{split}$$

 $\xi = 1 (-1) \text{for } B^0(\bar{B}^0) \qquad \eta = 1 (-1) \text{for } D^+(D)$

• B Dalitz distribution written as a sum of intermediate 2-body states with resonances • amplitudes A_c and phases Φ_c , Φ_u floated in the fit. Ratio $r=|A_u/A_c|$ fixed to 0.3 (±0.1 variation included in systematics)

Time dependent Dalitz plot analysis of $B \rightarrow D^{\mp}K^{0}\pi t^{\pm}$, results on $2\beta + \gamma$

Analysis performed on 347 millions of BB pairs.

Number of signal events N=558±34 (likelihood fit on m_{FS} , ΔE and event shape variables)

r

$B^0 \rightarrow D^0 K(892)^{*0} [K^+ \pi^-]$: a self tologing system

Other Babar analyses exploit the $B^0 \rightarrow D^0 K^{*0}[K^+\pi^-]$ system

 B^0 d \overline{B}^{0} \overline{d}

 $B^0 \rightarrow D^{(*)0} K^{*0}$ A B⁰ always decays into a K^{*0} in the final state, which decays into $K^+\pi^-$

$$K^{*0} \rightarrow K^+ \pi^-$$

$$\overline{B^0} \to D^{(*)\,0} \, \overline{K^{*0}}$$

A $\overline{B^0}$ always decays into a $\overline{K^{*0}}$ in the final state, which decays into $K^{-}\pi^{+}$

$$K^{*0} \rightarrow K^{-}\pi^{+}$$

The charge of the kaon in the final state identifies the flavour of the neutral B, sensitivity to γ

 $B^0 \rightarrow D^0 K^{*0} [K^+ \pi^-]$: the ratio r_s

Natural width of the K* has to be considered, effective parameters are introduced:

where k accounts for contributions of non-K^{*0}(892) resonances and in principle is an additional unknown (in case of two-body B decay, k \rightarrow 1, r_s \rightarrow r_B, $\delta_{s}\rightarrow\delta_{B}$). It is evaluated to be 0.95+-0.03 with a simulation study.

S.Pruvot, M.-H.Schune, V.Sordini, A.Stocchi in hep-ph/0703292 (to appear in Nagoya CKM workshop proceedings)

Integrals over the B \rightarrow DK π Dalitz plot in a region corresponding to the K*. Quantities dependent on the cuts applied on the Dalitz plot plane (cuts on K* mass and helicity)!

The ADS method

D.Atwood, I.Dunietz and A.Soni, Phys.Rev.Lett. 78, 3257 (1997)

"opposite sign" events (the kaon from the K* and the one from the D have OPPOSITE charge)

$$R_{ADS} = \frac{\Gamma \left(B^{0} \to f \ K^{*0}\right) + \Gamma \left(\overline{B^{0}} \to \overline{f} \ \overline{K^{*0}}\right)}{\Gamma \left(B^{0} \to \overline{f} \ K^{*0}\right) + \Gamma \left(B^{0} \to f \ \overline{K^{*0}}\right)} \longrightarrow V_{cb} DCS + V_{ub} CA$$

"same sign" events (the kaon from the K* and the one from the D have the SAME charge)

$$R_{ADS}(K\pi) \equiv \frac{\Gamma(B^0 \to K^{\frown}\pi^+[K^{+}\pi^-]_{K^{*0}}) + \Gamma(\overline{B^0} \to K^{+}\pi^-[K^{\bullet}\pi^+]_{K^{*0}})}{\Gamma(B^0 \to K^{+}\pi^-[K^{+}\pi^-]_{K^{*0}} + \Gamma(B^0 \to K^{-}\pi^+[K^{-}\pi^+]_{K^{*0}})}$$

The ADS method multi-body D decay

The three R_{ADS} ratios can be written as:

$$\begin{split} R_{ADS}(K\pi) &= r_{S}^{2} + r_{D}^{2}(K\pi) + 2\,k\,r_{S}\,r_{D}(K\pi)\cos(\delta_{D}(K\pi) + \delta_{S})\cos\gamma\\ R_{ADS}(K\pi\pi^{0}) &= r_{S}^{2} + r_{D}^{2}(K\pi\pi^{0}) + 2\,k\,k_{D}(K\pi\pi^{0})\,r_{S}r_{D}(K\pi\pi^{0})\cos(\delta_{D}(K\pi\pi^{0}) + \delta_{S})\cos\gamma\\ R_{ADS}(K3\pi) &= r_{S}^{2} + r_{D}^{2}(K3\pi) + 2\,k\,k_{D}(K3\pi)\,r_{S}r_{D}(K3\pi)\cos(\delta_{D}(K3\pi) + \delta_{S})\cos\gamma \end{split}$$

$$r_D = \sqrt{\frac{BR(D^0 \to \overline{f})}{BR(D^0 \to f)}} \quad \delta_D \text{ relative strong phase between } D^0 \to f \text{ and } D^0 \to \overline{f}$$

multi-body D final state $k_{D}e^{i\delta_{D}} = \frac{\int A_{D}\bar{A}_{D}e^{i(\bar{\delta}(m)-\delta(m))} dm}{\sqrt{\int |\bar{A}_{D}|^{2} dm \int |A_{D}|^{2} dm}}$ • low sensitivity to γ • $R_{ADS} \sim r_{S}^{2}$

Ratios r_{D} measured. Input from CLEO-c on k_{D} and δ_{D} for $K\pi\pi^{0}$ and δ_{D} for $K\pi$

$B^{0} \rightarrow D^{0} K^{*0} [K^{+} \pi^{-}] ADS clocilysis$ $(D^{0} \rightarrow K^{\mp} \pi^{\pm}, K^{\mp} \pi^{\pm} \pi^{0}, K^{\mp} \pi^{\pm} \pi^{-} \pi^{\pm})$

Preliminary, to be

submitted to

Phys.Rev.D

14

- analysis performed on 465 millions of BB pairs
 selection optimized on b→u events, maximizing S/√(S+B)
- Ikelihood fit to m_{ES} and event shape variables,

total number of opposite sign events $N=24^{+14}$ (2.2 σ significance)

statistically dominated. Main systematics from peaking background

signal enhanced $m_{_{ES}}$ projections of the likelihood on data

 \bullet likelihood scan for the three $R_{_{ADS}}$ ratios and 95% probability bayesian limits

 $B^{0} \rightarrow D^{0}[K_{\tau}\tau^{\dagger}\tau\tau^{\dagger}]K^{*0}[K^{\dagger}\tau\tau^{\dagger}]$ Dalitz analysis

A.Giri, Y.Grossman, A.Soffer and J.Zupan, Phys.Rev.D 68 (2003) 054081

 V_{cb} term is the one from $\overline{D^0}$ for the B⁰, the one from D⁰ for the $\overline{B^0}$.

16

$B^{0} \rightarrow D^{0} K^{*0} [K^{+} \pi^{-}] Dollitz clocitysis$

Preliminary, to be submitted to Phys.Rev.D

- Analysis of $B^0 \rightarrow D^0 K^{*0}$, with $D^0 \rightarrow K_s \pi^+ \pi^-$ and $K^{*0} \rightarrow K^- \pi^+$
- same cuts on $B \rightarrow DK\pi$ Dalitz plot (K* mass and helicity) as ADS analysis
- first analysis extracting directly γ from neutral B⁰ \rightarrow D⁰K^{*0} decays.
- m_{ES} and shape variables used in a maximum likelihood fit to discriminate between

signal and background

all peaking contribution found negligible

Analysis performed on **371M** of BB pairs.

Number of signal events N=39±9

signal enhanced $\mathrm{m}_{_{\mathrm{ES}}}$ projections of the likelihood on data

$B^{0} \rightarrow D^{0} K^{*0} [K^{+} \pi^{-}] Dollitz clocilysis$

Preliminary, to be submitted to Phys.Rev.D

- D⁰ Dalitz distribution used as an input in the fit
- CP fit for extraction of a 3-dimensional likelihood for $\gamma_{,r_{s'}}\delta$

main error statistical (55°)

• average error on toy-MC, for $r_s = 0.3$, is $(45 \pm 14)^\circ$

 main source of systematics from Dalitz model (evaluated on data), assumed Gaussian and convoluted with the 3-dimensional likelihood

> From toy-MC studies: this channel sensitivity is comparable with the one of a single channel for the charged B Dalitz analysis

Combined with the likelihood for r_s from B.Aubert et al (Babar coll.) Phys.Rev. D74, 031101 (2006)

 $\gamma = (162 \pm 56)^{o} (mod.180^{o})$

conclusions

- $B \rightarrow D^{(*)\mp}\Pi^{\pm}(\rho^{\pm})$ channels confirmed to have low sensitivity to γ ($r_{D} \sim 2\%$) • Angle γ known mainly from charged $B \rightarrow DK$, small values of the r_{R} ratios (~0.1)
- Neutral B \rightarrow DK decays can give access to γ as well

• Using a time dependent Dalitz analysis of $B \rightarrow D^{\mp} K^{0} \pi^{\pm}$ decays, Babar finds $2\beta + \gamma = (83 \pm 53 \pm 20)^{\circ}$ (with a 180° ambiguity)

• $r_s = |A(b \rightarrow u)| / |A(b \rightarrow c)|$ for $B^0 \rightarrow D^0 K^{*0}$ decays found to be $r_s \sim 0.25$, which makes this channel very promising for γ determinations (preliminary)

• first attempt of exploiting this channel for the extraction of γ using a Dalitz analysis of $B^0 \rightarrow D^0 K^{*0}$ decays gives $\gamma = (162\pm 56)^{\circ}$ (with a 180° ambiguity) (preliminary)

 \bullet With higher statistics, these analyses could give an important contribution to the determination of the angle $~\gamma$

Backup slides

CPV in the SM

Field theory that describes strong, weak and electromagnetic interactions in terms of gauge group theories, starting from the elementary particles.

strong interactions	gauge group			electroweak		
	SU(3)	$\mathbf{x} SU(2)$	$\mathbf{x} U(1)$	interactions		
color symmetry		isospin	hypercha	arge		
(strong interactions)		symmetry	svmme	svmmetrv		
(weak) 6 leptons (antipleptons), in three families			$\left(egin{array}{c} \nu_e \\ e \end{array} ight)$,	$\left(egin{array}{c} u_\mu \\ \mu \end{array} ight) \ , \ \left(egin{array}{c} u_ au \\ au \end{array} ight)$		
6 quarks (antiquarks), in three families			$\left(\begin{array}{c} u \\ d \end{array}\right) \ , \ \left(\begin{array}{c} c \\ s \end{array}\right) \ , \ \left(\begin{array}{c} t \\ b \end{array}\right)$			
Parity : $P(t, \vec{x}) = 0$ Charge c	$(t, -\vec{x})$ conjugatio	n: particle –	 antiparticl 	e		

CP violation discovered in 1964 in the K rare decays and then confirmed by the B-factories results

The CKM matrix and the Unitarity Triangle

Experimental measurement technicues

Exclusive reconstruction of B decays. Two sources of background: from BB events and from continuum events ($e^+e^- \rightarrow q\bar{q}$, with q=u,d,s,c).

Two almost-independent kinematic variables to characterize the B mesons:

$$m_{ES}(M_{bc}) = \sqrt{(s/2 + \vec{p}_B \vec{p}_{ee})^2 / E_{ee}^2 - \vec{p}_B^2} \int_{\mathbb{R}^2} \frac{1}{p_{ee}^2} \int_{\mathbb{R}^2} \frac{1}{p_{ee}^2}$$

 $(E_{B(ee)}, p_{B(ee)}) = 4$ -momentum of the reconstructed B or of the e⁺e⁻ initial state in the laboratory frame. The * denotes the e⁺e⁻ center of mass (CM) frame

y in charged $B \rightarrow DK$ decays

 γ weak phase between b \rightarrow c and b \rightarrow u transition

Interference scheme

CP violation detectable when there are two paths to reach the same final state. Interference in the B \rightarrow DK system allows the determination of γ

$$A_1 + A_2 e^{i\phi} |^2 = A_1^2 + A_2^2 + 2A_1 A_2 \cos(\phi)$$

Main characters: γ , $r_{_{\rm B}}$, δ

Sensitivity to γ is driven by the ratio $\mathbf{r}_{\mathbf{R}} = |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{u})| / |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{c})|$ (channel-dependent).

PEP II cincl BABAR

PEP II at SLAC (U.S.A.) e^+e^- collider with asymmetric beam energies @Y(4s) for B meson pairs production. General purpose detector **Babar**

Different methods

Different methods proposed to study the $B \rightarrow D^0 K$ decays,

• GLW method:

D⁰ mesons reconstructed in two-body CP-eigenstate final states: K^+K^- , $\pi^+\pi^-$ (CP even) $K_s\pi^0$, $K_s\omega$ (CP odd)

• ADS method:

 $D^{\scriptscriptstyle 0}$ mesons reconstructed in non CP-eigenstate final states: $K^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}, K^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0}$

GGSZ (Dalitz) method:

 D^0 mesons reconstructed in three-body CP-eigenstate final states: $K_{_S}\pi^+\pi^-$, $K_{_S}K^+\!K^-$, $\pi^+\pi^-\pi^0$

All methods used by Babar and Belle.

Best determination from Dalitz analyses: error on $\gamma ~ \sim 20^{\circ}-25^{\circ}$

erom evitiznez r ot

the one that gives the best error on y

Time dependent Dalitz plot analysis of $B \rightarrow D^{\mp}K^0 \pi^{\pm}$, resonance model

Isobar model

	Mass (GeV/c²)	Width (Gev/c²)	J^p	$a(V_{cb})$	$\phi(V_{cb})^o$	a(V _{ub})	$\phi(V_{ub})^o$
$D_{s2}(2573)^{\pm}$	2.572	0.015	2+	Ŧ	-	0.02	
$D_2^{*}(2460)^0$	2.461	0.046	2+	0.12	30	0.048	30
D ₀ (2308) ⁰	2.308	0.276	0+	0.12	70	0.048	90
K*(892)±	0.89166	0.0508	1-	1	0	-	-
$K_0^*(1430)^{\pm}$	1.412	0.294	0+	0.6	80	-	-
$K_2^{*}(1430)^{\pm}$	1.4256	0.0985	2+	0.2	0	-	-
K*(1680) ±	1.717	0.322	1-	0.3	30	-	-
"Non Resonant"	-	-	-	0.07	0	0.028	30

$B^0 \rightarrow D^0 K^{*0} [K^+ \pi^-]$: cuts on K^{*0}

The selection of the K* is common to the ADS and Dalitz analyses

Cuts optimized maximizing the statistical significance S / $\sqrt{(S+B)}$

Inputs from CLEO-c

As shown in: arXiv:0805.1722 [hep-ex]

News from CLEO-c:

- strong phase measured for $K^{+}\pi^{-}$, $\delta = (22+14-16)^{\circ}$
- D Dalitz variables measured for $K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
- analysis ongoing for $K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle 0}$

The factor $R_{K3p} = k_D$ is significantly smaller than 1, as it is reasonable since we do not cut on Dalitz plane.