Possible hints of New Physics in Flavor Physics

Enrico Lunghi University of Indiana

CKM 2008 - Roma

Mostly based on: E.L. and A. Soni, arXiv:0707.0212 arXiv:0803.4340 in preparation

Outline

- A critical review of the UT fit:
 - New formula for ε_K
 - The role of V_{cb} and V_{ub}
 - Updated inputs

[Andriyash,Ovanesyan,Vysotsky] [Buras,Guadagnoli]

- The UT fit and what it suggests about new physics:
 - NP in B_d mixing and in $b \rightarrow s$ amplitudes
 - NP in K mixing and in $b \rightarrow s$ amplitudes
- Correlation with NP signals in Bs mixing and in $B{\rightarrow}K\pi$
- Conclusions

[Buras,Guadagnoli] [EL,Soni]

CKM08 Roma

[EL,Soni]

K mixing

$$\varepsilon_{K} = \frac{A(K_{L} \to (\pi\pi)_{I=0})}{A(K_{S} \to (\pi\pi)_{I=0})}$$

$$= e^{i\phi_{\varepsilon}} \sin \phi_{\varepsilon} \left(\frac{\mathrm{Im}M_{12}^{K}}{\Delta M_{K}} + \frac{\mathrm{Im}A_{0}}{\mathrm{Re}A_{0}}\right)$$

$$= e^{i\phi_{\varepsilon}} \kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K} |V_{cb}|^{2} \lambda^{2} \eta \left(|V_{cb}|^{2} (1-\bar{\rho}) + \eta_{tt}S_{0}(x_{t}) + \eta_{ct}S_{0}(x_{c}, x_{t}) - \eta_{cc}x_{c}\right)$$

- Experimentally one has: $\phi_arepsilon = (43.51 \pm 0.05)^o$
- ImA₀/ReA₀ can be extracted from experimental data on ε'/ε and theoretical calculation of isospin breaking corrections
- The final result is: $\kappa_{arepsilon} = 0.92 \pm 0.02$

[Andryiash,Ovanesyan,Vysotsky; Nierste; Buras,Jamin; Bardeen,Buras,Gerard; Buras,Guadagnoli]

[PDG⁻

K mixing

 $|\varepsilon_K| = \kappa_{\varepsilon} C_{\varepsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \eta \left(|V_{cb}|^2 (1 - \bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$

- Note the quartic dependence on V_{cb} : $|V_{cb}|^4 \sim A^4 \lambda^8$
- Critical input from lattice QCD:

 $\langle K^0 | \mathcal{O}_{VV+AA}(\mu) | \bar{K}^0 \rangle = \frac{8}{3} f_K^2 M_K^2 B_K(\mu)$

Using <u>2+1 flavor domain wall fermions</u>, the RBC and UKQCD collaborations find [PRL'08, saw in Enno Scholz talk]:

$$B_{K}^{\overline{MS}}(2\text{GeV}) = Z_{B_{K}}^{\overline{MS}} B_{K} = [0.928(05)_{\text{stat}}(23)_{\text{disc}}] \times [0.565(10)_{\text{stat}}(06)_{\text{FVE}}(11)_{\text{Ch}}(06)_{m_{s}}(23)_{\text{scale}}]$$

Adding the systematic errors in quadrature they quote:

$$\hat{B}_K = 0.720 \pm 0.013_{\text{stat}} \pm 0.037_{\text{syst}}$$

Enrico Lunghi

- Exclusive from B→D*IV. Using form factor from lattice QCD (2+1 dynamical staggered fermions) one finds:
 |V_{cb}| = (38.7 ± 0.7_{stat} ± 0.9_{syst}) 10⁻³
- Inclusive from global fit of $B \rightarrow X_c Iv$ moments.

- Inclusion of b→sγ has strong impact on quark masses but not on V_{cb}
- NNLO in α_s and O(1/m_b⁴) known
- Calculation of $O(\alpha_s/m_b^2)$ under way
- Issue of mb is relevant for Vub

 $|V_{cb}| = (41.67 \pm 0.43 \pm 0.08 \pm 0.58) \, 10^{-3}$ 2.2 σ discrepancy between

inclusive and exclusive

- Exclusive from B→πIV. Using form factor from lattice QCD (2+1 dynamical staggered fermions) one finds:
 |V_{ub}| = (3.55 ± 0.25_{stat} ± 0.5_{syst}) 10⁻³
 - $|V_{ub}| = (3.78 \pm 0.3_{\text{stat}} \pm 0.34_{\text{syst}} \pm 2.5_{\text{exp}}) 10^{-4}$

[HPQCD] not independent [Fermilab,Milc]

doesn't use $b \rightarrow s\gamma$

CKM08 Roma

• Inclusive from global fit of $B \rightarrow X_u Iv$ moments.

$$\begin{split} |V_{ub}| &= \left(3.94 \pm 0.15_{\exp -0.23 \text{th}}^{+0.20}\right) 10^{-3} & \text{[Gambino,Giordano,Ossola, Uraltsev (GGOU)]} \\ |V_{ub}| &= \left(4.48 \pm 0.16_{\exp -0.26 \text{th}}^{+0.25}\right) 10^{-3} & \text{[Andersen,Gardi (DGE)]} \\ |V_{ub}| &= \left(3.99 \pm 0.14_{\exp -0.27 \text{th}}^{+0.32}\right) 10^{-3} & \text{[Bosch,Lange,Neubert,Paz}_{(BLNP)]} \end{split}$$

B_q mixing

• We consider the ratio of the B_s and B_d mass differences:

$$\frac{\Delta M_{B_s}}{\Delta M_{B_d}} = \frac{m_{B_s}}{m_{B_d}} \frac{\hat{B}_s f_{B_s}^2}{\hat{B}_d f_{B_d}^2} \left| \frac{V_{ts}}{V_{td}} \right|^2 = \frac{m_{B_s}}{m_{B_d}} \xi^2 \left| \frac{V_{ts}}{V_{td}} \right|^2$$

- No dependence on V_{cb}
- We use unquenched results for the ratio of decay constants: $f_{B_s}/f_{B_d} = 1.20 \pm 0.02_{\text{stat}} \pm 0.05_{\text{syst}}$ [Fermilab-Milc,HPQCD]
- Only quenched simulations for Bq are available: $\hat{B}_s/\hat{B}_d = 1.00 \pm 0.02$ [Becirevic]
- Combining the two we obtain: $\xi = 1.20 \pm 0.06$

- We will consider the asymmetries in the $J/\psi, \ \phi, \ \eta'$ modes
- A case can be made for the $K_s K_s K_s$ final state [Cheng, Chua, Soni]

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

Enrico Lunghi

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

10

Enrico Lunghi

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

- We treat all systematic uncertainties as gaussian
- Most relevant systematic errors come from lattice QCD (B_K,ξ) and are obtained by adding in quadrature several different sources of uncertainty
- Gaussian treatment seems a fairly conservative choice

• Strain between $|V_{ub}|/V_{cb}|$, ε_K , $\Delta M_{B_s}/\Delta M_{B_d}$ and $a_{(\psi,\phi,\eta')K_s}$

• $\epsilon_{\rm K} + \Delta M_{\rm Bs} / \Delta M_{\rm Bd} + V_{\rm cb}$: $\sin(2\beta) = 0.87 \pm 0.09$ $a_{\psi K} = 0.681 \pm 0.025$ [2 σ] $a_{\phi K} = 0.39 \pm 0.17$ [2.5 σ] $a_{\eta' K} = 0.61 \pm 0.07$ [2.3 σ]

CKM08 Roma

• $\epsilon_{\rm K} + \Delta M_{\rm Bs} / \Delta M_{\rm Bd} + V_{\rm cb} : \sin(2\beta) = 0.87 \pm 0.09$ • $|V_{\rm ub} / V_{\rm cb}| + \gamma :$ $\sin(2\beta) = 0.71 \pm 0.07$ [1.4 σ]

New physics in B mixing and $A(b \rightarrow s)$

• We can interpret (K mixing could also play a role) the strain in the UT fit as new physics in the B_d mixing phase and in $b \rightarrow s$ amplitudes:

$$M_{12} = M_{12}^{\mathrm{SM}} r^2 e^{2i\phi_d}$$
$$A(b \to s\bar{s}s) = [A(b \to s\bar{s}s)]_{\mathrm{SM}} e^{i\theta_A}$$

• This implies:

$$a_{\psi K_s} = \sin 2(\beta + \phi_d)$$
$$a_{(\phi,\eta')K_s} = \sin 2(\beta + \phi_d + \theta_A)$$

- In general NP will affect in different ways the various $b \to s$ channels so this is only a first step

New physics in B mixing and $A(b \rightarrow s)$

New physics in B mixing and A(b ightarrow s)

• $\epsilon_{\rm K} + \Delta M_{\rm Bs} / \Delta M_{\rm Bd} + V_{\rm cb} + \gamma + V_{\rm ub}$: $\sin(2\beta) = 0.77 \pm 0.037$ $a_{\psi K} = 0.681 \pm 0.025$ [2.1 σ] $a_{\phi K} = 0.39 \pm 0.17$ [2.2 σ]

 $a_{\eta'K} = 0.61 \pm 0.07$ [2.1 σ]

CKM08 Roma

Model Independent Analysis

• Without V_{ub} : $\phi_d = (-7.5 \pm 4.6)^\circ$ $\theta_A = (-3.7 \pm 2.5)^\circ$

Model Independent Analysis

• With V_{ub}: $\phi_d = (-3.8 \pm 1.9)^{\circ}$ $\theta_A = (-3.7 \pm 2.5)^{\circ}$

Model Independent Analysis

Correlation with other observables

- Proper treatment of new physics effects in penguin amplitudes is better implemented with NP contributions to the QCD penguin (O₄), EW penguin (O_{3Q}) and chromo-magnetic (O₈) operators
- Correlation between the $b \rightarrow s\bar{s}s$ and KT asymmetries:

 $A_{CP}(B^- \to K^- \pi^0) - A_{CP}(\bar{B}^0 \to K^- \pi^+) = \begin{cases} (14.4 \pm 2.9) \% & \exp \\ (2.5 \pm 1.5) \% & \text{QCDF} \end{cases}$

- QCDF result very stable under variation of all the inputs
- Possible issue with large color suppressed contributions to the $K^-\pi^0$ final state

Correlation with other observables

• Recent CDF and D0 measurements of mixing induced CP violation in $B_s \rightarrow J/\psi \phi$ point towards a sizable phase in the B_s mixing amplitude

$$\phi_s = \left\{ \begin{array}{l} \left(-22^{+11}_{-8}\right)^{\rm o} \\ \left(-68^{+8}_{-11}\right)^{\rm o} \end{array} \right. \text{[HFAG]}$$

[see also: UTfit 0803.0659]

- Sign and magnitude of ϕ_s are similar to sign and magnitude of ϕ_d
- Possible common source? [Buras,Guadagnoli]

New physics in K system

- Alternative solution to the strain in the UT fit is NP in EK [Buras,Guadagnoli]
- A new phase in penguin amplitudes (θ_A) is still required
- Using a simple parametrization ($\varepsilon_K = \varepsilon_K^{\rm SM} \ C_{\varepsilon}$) we find:

Conclusions

- Thanks to the significantly improved accuracy in B_K [RBC +UKQCD, PRL'08], V_{ub} needs not to be used to get a meaningful constraint on $\sin(2\beta)$
- Strain between time dependent CP asymmetries, K and B mixing hints to new physics in the flavor sector:
 - new phase in penguin $b \rightarrow s$ amplitudes
 - new phase in B_d or K mixing
- Possibility to correlate these effects with new physics signals in B_s mixing and direct CP asymmetries in the KTT system