

UT updated results on the CKM angle γ

on behalf of the **UTfit** collaboration: M.Bona, M.Ciuchini, E.Franco, V.Lubicz, G.Martinelli, F.Parodi, M.Pierini, C.Schiavi, L.Silvestrini, V.Sordini, A.Stocchi, C.Tarantino, V.Vagnoni

Viele Serdini, CIXIVI 2008 - Reme

 ${\scriptstyle \bullet}$ Updated results on ${\scriptstyle \gamma}$ from all the available constraints

- Crosschecks with the BaBar Dalitz analysis
- Crosschecks with the Belle Dalitz analysis

Conclusions

Experimental inputs

B→DK decays can proceed both through b→c and b→u transitions: we are sensitive to the relative weak phase γ in the interference $A=(\bar{\rho},\bar{\eta})$

$$B^{\pm} \to D^0(\bar{D}^0) K^{\pm}$$
$$B^0 \to D^0(\bar{D}^0) K^{*0}$$

$D^0\! ightarrow\!K_S^{}\pi^+\pi^-$, $K_S^{}K^{\!\scriptscriptstyle+}K^{\!\scriptscriptstyle-}$, $\pi\pi\pi^0$	GGSZ (Dalitz)	
$D^0 \! ightarrow \! K^{\! \! op } \pi^{\pm}$, $K^{\! \! \! op } \pi^{\pm} \pi^0$, $K^{\! \! \! \! op } \pi^{\pm} \pi^{\pm} \pi^{\mp}$	ADS	
$D^0\! ightarrow\!K_S^{}\pi^{0,}K_S^{}\omega$, $K^{\!\scriptscriptstyle +}K^{\!\scriptscriptstyle -}$, $\pi^{\scriptscriptstyle +}\pi^{\!\scriptscriptstyle -}$	GLW	

Experimental inputs: charged B

			NEW: see V.Tisserand talk (thursday)		
	DK	D [*] K		DK [*]	
GLW	Babar 382M (K ⁺ K ⁻ , $\pi^{+}\pi^{-}$, K _s ω , K _s π^{0}) Belle 275M (K ⁺ K ⁻ , $\pi^{+}\pi^{-}$, K _s ω , K _s π^{0} , K _s ϕ)	Babar 382M (K ⁺ K ⁻ , $\pi^{+}\pi^{-}$, K _s ω , K _s π^{0}) Belle 275M (K ⁺ K ⁻ , $\pi^{+}\pi^{-}$, K _s ω , K _s π^{0} , K _s ϕ)	Babar 37 Κ _s ω, Κ _s π ^o ,	' 9Μ (Κ ⁺ Κ ⁻ Κ _s φ)	⁻ , π ⁺ π ⁻ ,
ADS	Babar (232M K ⁺ π ⁻ , 226M K ⁺ π ⁻ π ⁰) Belle 657M (K ⁺ π ⁻)	Babar 232M (K ⁺ π ⁻)	Babar 3	79M (K+7	π ⁻)
DALITZ	Babar 382M (K _s π ⁺ π ⁻ , K _s K ⁺ K ⁻) Belle 635M (K _s π ⁺ π ⁻)	Babar 382M ($K_s \pi^+ \pi^-$, $K_s K^+ K^-$) Belle 635M ($K_s \pi^+ \pi^-$, 635M D ⁰ π^0 , 386M D ⁰ γ)	Babar 3 Belle 3	82M (K _s 86M (K _s	π ⁺ π ⁻) π ⁺ π ⁻)

Dalitz method: D Dalitz model uncertainty taken from BaBar analysis (with correlations)

Experimental inputs: neutral B

Viele Sereini, CKM 2008 - Reme

Updated for CKM 2008

ONLY NEUTRALS (BaBar)

..almost no impact on gamma for the moment..

Updated for CKM 2008

68% prob. interval	95% prob. interval
$\gamma = (78 \pm 12)^o$	$\gamma \in [54, 100]^{o}$
$r_{B}(DK) = 0.102 \pm 0.017$	$r_{B}(DK) \in [0.069, 0.133]$
$r_B(D^*K) = 0.089 \pm 0.034$	$r_B(D^*K) \in [0.021, 0.156]$
$r_{S}(DK^{*}) = 0.103^{+0.068}_{-0.064}$	$r_{S}(DK^{*}) \in [0.005, 0.233]$

Crosschecks

Crosschecks

Dalitz analysis: Babar extraction

statistical +experimental systematics model uncertainty $\gamma = (76^{+24}_{-25}\pm 5)^{\circ}$ **DK 1** σ interval $r_B = 0.086 \pm 0.036 \pm 0.011$ $r_B < 0.157$ **2** σ interval

D*K $r_B = 0.135 \pm 0.052 \pm 0.005$ $r_B^* \in [0.011, 0.237]$

DK *

*r*_{*S*}<0.377

WELL CONSISTENT (only difference in DK*, where lower stat. may lead to overestimate of the error on γ)

12

Crosschecks

0.35

0.3

0.25

0.2 0.15 0.1 0.05

З

Conclusions

- All the available constraints combined
- World average γ , known with an error ~ 12°

$$\gamma = (78 \pm 12)^{o}$$

 $r_{B}(DK) = 0.102 \pm 0.017$
 $r_{B}(D^{*}K) = 0.089 \pm 0.034$

Some crosscheck made: our results consistent with the one obtained from BaBar and Belle with a frequentistic approach Backup slides

The CKM matrix and the Unitarity Triangle

y in charged $B \rightarrow DK$ decays

 γ weak phase between b \rightarrow c and b \rightarrow u transition

Viele Sereini, CKM 2008 - Reme

Interference scheme

CP violation detectable when there are two paths to reach the same final state. Interference in the B \rightarrow DK system allows the determination of γ

$$A_1 + A_2 e^{i\phi} |^2 = A_1^2 + A_2^2 + 2A_1 A_2 \cos(\phi)$$

Main characters: γ , $r_{_{B}}$, δ

Sensitivity to γ is driven by the ratio $\mathbf{r}_{\mathbf{B}} = |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{u})| / |\mathbf{A}(\mathbf{b} \rightarrow \mathbf{c})|$ (channel-dependent).

Different methods

Different methods proposed to study the $B \rightarrow D^0 K$ decays,

• GLW method:

D⁰ mesons reconstructed in two-body CP-eigenstate final states: K^+K^- , $\pi^+\pi^-$ (CP even) $K_s\pi^0$, $K_s\omega$ (CP odd)

• ADS method:

 $D^{\scriptscriptstyle 0}$ mesons reconstructed in non CP-eigenstate final states: $K^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}, K^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0}$

GGSZ (Dalitz) method:

 D^0 mesons reconstructed in three-body CP-eigenstate final states: $K_{_{S}}\pi^{_{+}}\pi^{_{-}}$, $K_{_{S}}K^{_{+}}K^{_{-}}$, $\pi^{^{+}}\pi^{^{-}}\pi^{^{0}}$

All methods used by Babar and Belle.

Best determination from Dalitz analyses: error on $\gamma ~ \sim 20^{\circ}-25^{\circ}$

erom svítiznez r ot

the one that gives the best error on y