$B \rightarrow X_c \ell \nu$ Theory: Status and Prospects Thomas Becher, Fermilab

CKM2008, ROME, SEPTEMBER 9-13, 2008

OUTLINE

- Introduction: OPE calculation and moment analysis
- Progress since CKM '06
 - $\mathcal{O}(\alpha_s^2)$ calculation of leading power rate and moments.
 - $\mathcal{O}(\alpha_s)$ calculation of $1/m_b^2$ power corrections.
 - leading-order calculation of $1/m_b^4$.
- Beyond NNLO and $1/m_b^4$
 - "Intrinsic charm",
 - quark-hadron duality
 - $\blacksquare B \to X_c \ell \nu \quad \text{vs.} \quad B \to X_s \gamma$

OPERATOR PRODUCT EXPANSION

• OPE corresponds to expansion of the rate in $1/m_b$

$$\Gamma(\bar{B} \to X_c \ell \bar{\nu}) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \left\{ f(\rho) + k(\rho) \frac{\mu_\pi^2}{2m_b^2} + g(\rho) \frac{\mu_G^2}{2m_b^2} \right\}$$

 $+d(\rho)\frac{\rho_D^3}{m_b^3}+l(\rho)\frac{\rho_{\rm LS}^3}{m_b^3}+\mathcal{O}(m_b^{-4})$

with
$$\rho = \frac{m_c^2}{m_b^2}$$
.

OPERATOR PRODUCT EXPANSION

• OPE corresponds to expansion of the rate in $1/m_b$

$$\Gamma(\bar{B} \to X_c \ell \bar{\nu}) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \left\{ f(\rho) + k(\rho) \frac{\mu_\pi^2}{2m_b^2} + g(\rho) \frac{\mu_G^2}{2m_b^2} \right\}$$

$$+ \underbrace{d(\rho)}_{m_b^3} \underbrace{\frac{\rho_D^3}{m_b^3}}_{m_b^3} + \underbrace{l(\rho)}_{m_b^3} \underbrace{\frac{\rho_{\rm LS}^3}{m_b^3}}_{m_b^3} + \mathcal{O}(m_b^{-4}) \bigg\}$$

Wilson coefficients f, g, k, d, l can be calculated in perturbation theory, e.g.

$$f = f^{(0)}(\rho) + \frac{\alpha_s}{\pi} f^{(1)}(\rho) + \left(\frac{\alpha_s}{\pi}\right)^2 f^{(2)}(\rho) + \mathcal{O}(\alpha_s^3)$$

Note: f = -k for total rate.

OPERATOR PRODUCT EXPANSION

• OPE corresponds to expansion of the rate in $1/m_b$

$$\begin{split} \Gamma(\bar{B} \to X_c \ell \bar{\nu}) &= \frac{G_F^2 |V_{cb}|^2 m_b^5}{192 \pi^3} \left\{ f(\rho) + k(\rho) \frac{\mu_\pi^2}{2m_b^2} + g(\rho) \frac{\mu_G^2}{2m_b^2} \right. \\ &+ d(\rho) \frac{\rho_D^3}{m_b^3} + l(\rho) \frac{\rho_{\rm LS}^3}{m_b^3} + \mathcal{O}(m_b^{-4}) \right\} \end{split}$$

Non-perturbative parameters μ_{π} , μ_{G} , ρ_{D} , ρ_{LS} are matrix elements of local operators in HQET, e.g.

 $\frac{1}{2M_B} \langle \bar{B}(p_B) | \bar{h}_v(iD)^2 h_v | \bar{B}(p_B) \rangle = \lambda_1 = -\mu_\pi^2 \qquad \frac{1}{2M_B} \langle \bar{B}(p_B) | \frac{g}{2} \bar{h}_v \sigma_{\mu\nu} G^{\mu\nu} h_v | \bar{B}(p_B) \rangle = 3\lambda_2 = \mu_G^2$

scale like $(\Lambda_{\rm QCD})^n$

DETERMINATION OF $|V_{cb}|$

- Need the values of the quark masses m_c and m_b and matrix elements μ_{π} , μ_G , ρ_D , ρ_{LS} to obtain a precise value of $|V_{cb}|$.
- Can be obtained from spectral moments

$$\langle E_l^n E_X^m (M_X^2)^l \rangle = \frac{1}{\Gamma(E_l > E_0)} \int_{E_0}^{E_{\max}} dE_l \int dE_X \int dM_X \frac{d\Gamma}{dE_X \, dM_X \, dE_l} E_l^n E_X^m \, (M_X^2)^l$$

OPE for moments involves *same* matrix elements
and different, calculable Wilson coefficients.

MOMENT ANALYSIS

Two independent implementations:

- Bauer, Ligeti, Luke, Manohar and Trott '01 and '04
- Buchmüller and Flächer '05 (fit) using Benson, Bigi, Gambino, Uraltsev '04 (calculations)
- + improved codes used by Babar, Belle and HFAG.

FIT RESULT

HFAG, ICHEP '08

Fit Results in the Kinetic Scheme

Input	IV _{cb} I (10 ⁻³)	m _b ^{kin} (GeV)	mu ² _{pi} (GeV ²)		chi ² /ndf.
all moments (X _c lnu and X _s gamma)	$\begin{array}{c} 41.67 + -0.43(\text{fit}) + - \\ 0.08(\text{tau}_{\text{B}}) + -0.58(\text{th}) \end{array}$	4.601 +/- 0.034	0.440 +/- 0.040	details	29.7 / (64-7)
X _c lnu only	41.48 + - 0.47(fit) + - 0.08(tau _B) + - 0.58(th)	4.659 +/- 0.049	0.428 +/- 0.044	details	24.1 / (53-7)

- Most precise value of $|V_{cb}|$. Exclusive determination gives $|V_{cb}| = (38.7 \pm 0.9_{exp} \pm 1.0_{theo}) \times 10^{-3}$ (J. Laiho's talk),
- and precise value of m_{b} , crucial input for $|V_{ub}|$.

SCHEME CHOICE

- Pole-scheme for HQET parameters leads to large perturbative corrections, use improved definitions: kinetic-, 1S-, potential-subtracted or shape function scheme, ...
 - common goal of these schemes: reduce IR sensitivity by removing Λ_{QCD} renormalon of pole mass.
- Currently two fits are performed by HFAG, based
 - IS-scheme and kinetic scheme
 - Seizable two-loop effects in conversion of *m_b* between schemes! → Two-loop effects in moments will also be important, at least in one of the schemes.
- Note: m_b is an important input for $|V_{ub}|$ determination.
 - Performed in the shape-function scheme. Bosch, Neubert, Lange and Paz '05 and in kinetic scheme. Gambino, Giordano, Ossola and Uraltsev '07

RECENT PROGRESS

NNLO

NEW: Full two-loop calculation of leading power rate!

- Agreement between two independent calculations
 - Analytical, expansion in m_c/m_b . Czarnecki and Pak '08
 - total rate and lowest two moment in lepton and hadron-energy.
 - Numerical Melnikov '08
 - arbitrary moments with arbitrary cuts
 - Corrected earlier estimate of the correction to the rate. Czarnecki, Dowling and Pak '08

NNLO RESULTS

Lepton energy moments, normalized to tree-level rate

$$L_{0} = 1 - 1.78 \left(\frac{\alpha_{s}}{\pi}\right) + \left(\frac{\alpha_{s}}{\pi}\right)^{2} \left[-1.92_{BLM}\beta_{0} + 3.40\right]$$

$$L_{1} = 0.307 \left\{ 1 - 1.79 \left(\frac{\alpha_{s}}{\pi}\right) + \left(\frac{\alpha_{s}}{\pi}\right)^{2} \left[-2.01_{BLM}\beta_{0} + 3.61\right] \right\}$$

$$L_{2} = 0.102 \left\{ 1 - 1.82 \left(\frac{\alpha_{s}}{\pi}\right) + \left(\frac{\alpha_{s}}{\pi}\right)^{2} \left[-2.11_{BLM}\beta_{0} + 3.83\right] \right\}$$

- The BLM-corrections were known before and are included in fit [$\beta_0 = 8.33$]. The new, non-BLM, terms have opposite sign.
- Leads to a ~ 1% reduction in $|V_{cb}|$ (pole scheme).
 - Fit in kinetic scheme includes an estimate of non-BLM terms, further reduction is 0.25 x 10⁻³ ~ 0.6%.
 - Shift in 1S scheme is -0.14×10^{-3} .

LEPTON MOMENTS

K. Melnikov, arXiv:0803.0951

Lepton moments, but now normalized to the total rate

$$L_{0} = 1$$

$$L_{1} = 0.307 \left\{ 1 - 0.02 \left(\frac{\alpha_{s}}{\pi}\right) + \left(\frac{\alpha_{s}}{\pi}\right)^{2} \left[-0.09_{BLM}\beta_{0} + 0.18\right] \right\}$$

$$L_{2} = 0.102 \left\{ 1 - 0.04 \left(\frac{\alpha_{s}}{\pi}\right) + \left(\frac{\alpha_{s}}{\pi}\right)^{2} \left[-0.19_{BLM}\beta_{0} + 0.35\right] \right\}$$

• with a cut $E_l > 1$ GeV

$$L_{0} = 0.815 \left\{ 1 + 0.01 \left(\frac{\alpha_{s}}{\pi} \right) + \left(\frac{\alpha_{s}}{\pi} \right)^{2} \left[-0.05_{BLM} \beta_{0} - 0.15 \right] \right\}$$

$$L_{1} = 0.278 \left\{ 1 - 0.01 \left(\frac{\alpha_{s}}{\pi} \right) + \left(\frac{\alpha_{s}}{\pi} \right)^{2} \left[-0.12_{BLM} \beta_{0} + 0.18 \right] \right\}$$

$$L_{2} = 0.098 \left\{ 1 - 0.04 \left(\frac{\alpha_{s}}{\pi} \right) + \left(\frac{\alpha_{s}}{\pi} \right)^{2} \left[-0.21_{BLM} \beta_{0} + 0.42 \right] \right\}$$

In either case, the corrections are small! Looks like small correction for m_b.

POWER CORRECTIONS AT NLO

$$\begin{split} \Gamma(\bar{B} \to X_c \ell \bar{\nu}) &= \frac{G_F^2 |V_{cb}|^2 m_b^5}{192 \pi^3} \left\{ f(\rho) + k(\rho) \frac{\mu_\pi^2}{2m_b^2} + g(\rho) \frac{\mu_G^2}{2m_b^2} + \mathcal{O}(m_b^{-3}) \right\} \\ \text{with } \rho &= m_c^2 / m_b^2 \end{split}$$

- The one-loop corrections to the Wilson coefficient of the power suppressed kinetic- and chromo-magnetic contribution, k(Q) and g(Q), give effects of the same order of magnitude as two-loop f(Q).
 - Have evaluated one-loop kinetic corrections to moments, TB, Boos and Lunghi, arXiv:0710.0680
 - chromo-magnetic corrections in progress.

TB, Lange, Lunghi; Mannel et al.

ONE-LOOP KINETIC CORRECTIONS

- To get kinetic correction, one needs to expand one-loop rate in residual momentum $p_b^{\mu} = m_b v^{\mu} + r^{\mu}$.
- Two ways of doing this matching calculation:
 - expand partonic rate in r_{μ} before or after loop and phasespace integration. Since on-shell HQET matrix elements are trivial, the expansion commutes with loop integration.
- As a check on our result and its numerical accuracy, we have performed the calculation both ways.
 - Expanding after integration is more elegant and more subtle.
 - Expanding before integration somewhat tedious but a good warm up for calculation of chromo-magnetic corrections.

RESULTS FOR PARTONIC MOMENTS

	1	$\frac{\alpha_s}{\pi}$	$\frac{\mu_\pi^2}{2m_b^2}$	$\frac{\alpha_s}{\pi} \; \frac{\mu_\pi^2}{2m_b^2}$	%
1	0.5149(3)	-0.910(3)	-0.5692(6)	0.987(8)	0.1
\hat{E}_l	0.1754(1)	-0.314(1)	0.0109(3)	-0.024(3)	0.
\hat{E}_l^2	0.06189(5)	-0.1128(5)	0.1105(1)	-0.202(1)	-0.2
\hat{E}_l^3	0.02251(2)	-0.0418(2)	0.09269(5)	-0.1722(7)	-0.6
\hat{E}_x	0.2111(1)	-0.365(1)	-0.5694(2)	1.010(3)	0.4
\hat{E}_x^2	0.08917(7)	-0.1482(7)	-0.3378(1)	0.576(1)	0.5
\hat{E}_x^3	0.03867(4)	-0.0606(4)	-0.16898(6)	0.2639(7)	0.5

 $\frac{\alpha_s}{\pi} \approx 0.07$ $\frac{\mu_\pi^2}{2m_b^2} \approx 0.01$

with cut $\hat{E}_l = E_l / m_b > 1/4.6$ and $\frac{m_c}{m_b} = 1/4$

- Small correction for moments which are of "natural size".
- Expect chromo-magnetic corrections to be more important, since tree-level corrections are few times larger.

RESULTS FOR PARTONIC MOMENTS

	1	$rac{lpha_s}{\pi}$	$\frac{\mu_\pi^2}{2m_b^2}$	$\frac{\alpha_s}{\pi} \; \frac{\mu_\pi^2}{2m_b^2}$	%
$(\hat{p}_x^2 - \rho)$	0	0.03618(2)	-0.6855(2)	1.213(2)	-25.5
$(\hat{p}_x^2 - \rho)^2$	0	0.002808(2)	0.15198(4)	-0.4388(5)	-21.6
$(\hat{p}_x^2- ho)^3$	0	0.0004053(3)	0	0.020998(4)	32.9
$\hat{E}_x(\hat{p}_x^2- ho)$	0	0.01801(1)	-0.20707(6)	0.2961(8)	-39.2
$\hat{E}_x(\hat{p}_x^2-\rho)^2$	0	0.0015307(10)	0.06794(2)	-0.1897(3)	-20.1
$\hat{E}_x^2(\hat{p}_x^2 - \rho)$	0	0.009147(6)	-0.05271(2)	0.0304(3)	12.4
with out	$\hat{\mathbf{\Gamma}}$	Γ / \sim 1 /	1.6 and η	n_{c}	

$$\frac{\alpha_s}{\pi} \approx 0.07$$
$$\mu^2$$

N

 $\frac{\mu_{\pi}^2}{2m_b^2} \approx 0.01$

with cut $\hat{E}_l = E_l / m_b > 1/4.6$ and $\frac{m_c}{m_b} = 1/4$

- Large corrections for those moments that vanish at leading power.
 - The corrections will change the extracted value of μ_{π}^2 by about 20-30% in the pole scheme (maybe less with a better scheme).

$1/m_b^4$ CORRECTIONS

Dassinger, Mannel and Turczyk '06

- Heavy quark expansion has been carried out one order further for rate and moments.
- Five additional hadronic parameters s_1, \ldots, s_5 .
- Using "naive factorization" estimate for these parameters, the effects are found to be small unless high moments are considered.

• e.g.
$$\frac{\delta^{(4)}\Gamma}{\Gamma} \approx 0.25\%$$

Can either try to extract $s_{1,...,s_5}$ from moment fit, or scan over some range to estimate theoretical $1/m_b^4$ uncertainty.

ERROR ESTIMATES

- How do the newly calculated results compare to earlier error estimates?
 - Moment fit in kinetic scheme estimated

 $A_{\text{pert}} = \frac{\Gamma(B \to X_c \ell \nu)}{\Gamma(B \to X_c \ell \nu)|_{\text{tree}}} = 0.908 \pm 0.009$

Full NNLO value: $A_{pert} = 0.919$

Fit in 1S scheme estimated uncertainty from non-BLM two-loop piece to be half of of the BLM piece. This amounts to a 1.5% of the tree-level rate, 3x more than the actual correction.

POWER CORRECTIONS

For α_s -corrections to $1/m_b^2$ terms:

• Kinetic scheme fit estimates those by varying μ_{π} and μ_{G} by 20%.

IS fit estimates them to be

$$\frac{\alpha_s}{4\pi} \left(\frac{\Lambda_{QCD}}{m_b}\right)^2 \sim 0.0002$$

Calculation of kin. corr typically gives values

$$8 \times \frac{\alpha_s}{4\pi} \left(\frac{\Lambda_{QCD}}{m_b}\right)^2 = 0.15 \left(\frac{\Lambda_{QCD}}{m_b}\right)^2$$

Larger than 1S estimate, as expected in kin. fit.

TO DO

- Finish $O(\alpha_s)$ calculation of chromomagnetic Wilson coefficient, $g(\rho)$.
 - if possible evaluate also $O(\alpha_s)$ for $d(\rho)$ the coefficient of ρ_D , which is $1/m_b^3$ but numerically large.
- Implement new corrections into moment fit codes
 - Convert from pole to other schemes: kinetic, 1S, shapefunction scheme, ...
 - What form is most convenient? Grid of values, expansion around default values?
- This will largely eliminate theoretical uncertainties from moment fit.
 - increased precision and better consistency check

"INTRINSIC CHARM" Bigi, Uraltsev, Zwicky '05; Breidenbach, Feldmann, Mannel, Turczyk'08

- In the standard OPE, $m_b \sim m_c \gg \Lambda_{QCD}$ charm quarks are integrated out in perturbation theory, such that no operators with *c*-quarks have to be considered.
- Can instead assume $m_b \gg m_c \gg \Lambda_{QCD}$ and perform the OPE in two steps:
 - First integrate out physics associated with $\mu \sim m_b$. OPE includes operators with *c*-quarks, e.g.

$$(b_v \,\gamma_\nu P_L \,c) \,(\bar{c} \,\gamma_\mu P_L \,b_v)$$

- Then integrate out charm.
 - Second step is an expansion in $1/m_c$.

"INTRINSIC CHARM"

• Leading terms from the expansion in $1/m_c$ scale as

$$\propto \frac{\Lambda_{\rm QCD}^5}{m_c^2 m_b^3}$$
 or $\alpha_s(m_c) \frac{\Lambda_{\rm QCD}^4}{m_c m_b^3}$

- In the standard counting $1/m_b^5$ and α_s/m_b^4 , but enhanced compared to other contributions.
- Numerical estimate gives Bigi, Uraltsev, Zwicky '05

$$\frac{\Gamma_{\rm s.l.}}{\Gamma_{\rm s.l.}} \approx 0.003$$

N.B. effect has little or nothing to do with "intrinsic charm" in exclusive decays.

"INTRINSIC CHARM"

• Leading terms from the expansion in $1/m_c$ scale as

 $\propto \begin{pmatrix} \Lambda_{QCD}^{b} \\ m_{c}^{2}m_{b}^{3} \end{pmatrix} \text{ or } \alpha_{s}(m_{c}) \frac{\Lambda_{QCD}^{4}}{m_{c}m_{b}^{3}}$ $I_{I} \text{ muliplied by } d(\rho), \text{ can be absorbed into redefinition of } \rho_{D}$ Breidenbach, Feldmann, Mannel, Turczyk'08 Numerical estimate gives Bigi, Uraltsev, Zwicky '05 $\frac{\delta\Gamma_{s.l.}}{\Gamma_{s.l.}} \approx 0.003$ N B effect bas little or pothing to do with "intrinsic.

N.B. effect has little or nothing to do with "intrinsic charm" in exclusive decays.

QUARK-HADRON DUALITY

- Expanding in $1/m_b$ one looses non-analytic terms of the form $\frac{1}{m_b^n} \sin(m_b/b)$
 - Model calculations Shifman '00 give high value n=8 suppression relative to leading term for semileptonic decay rate.
 - if so, these effects are tiny
 - Oscillatory terms due to resonances and get averaged away in sufficiently inclusive quantities.
 - Effects can become bigger once cuts are applied

DUALITY IN $b \rightarrow c$

- To my knowledge all model studies were done for *totally inclusive* b→u rate, but b→c situation seems quite different.
- Lowest resonances essentially saturate $B \rightarrow X_c l v$
 - $\sim 80\% X_{\rm c} = D \text{ or } D^*$
 - \sim 5-10% $X_{\rm c} = D^{**}$
- Lowest states $(\pi, \eta, \varrho, \omega)$ amount to ~ 30% of $B \rightarrow X_u l v$
- It would be interesting to specifically try to study duality violation in "heavy quark" \rightarrow "heavy quark" decays.

$B \rightarrow X_s \gamma \text{ MOMENTS}$

Moment fit currently also includes $\overline{B} \to X_s \gamma$ photon energy moments with cut on $E_{\gamma} > 1.8$ GeV

- Because of the hard cut they cannot be reliably calculated using the standard OPE.
 - Non-perturbative shape function, even at leading power.
 - Current fits either use OPE directly (1S) or use shape function model (kin. scheme) "bias correction".
 - Until the uncertainty from the shape function is estimated, these moments should not be included in fit.

SUMMARY

- Moment analysis of $B \rightarrow X_c l \nu$ provides most precise value of $|V_{cb}|$ and crucial input (m_b, μ_{π}^2) for $|V_{ub}|$ determination
- Efforts to push the calculation of inclusive B decays to NNLO are far along.
 - Two-loop calculations of rate and moments complete.
 - One-loop corrections to power suppressed terms:
 - Evaluation of kinetic corrections complete,
 - chromo-magnetic corrections in progress.
 - Corrections need to be implemented into fitting codes.
 - This will eliminate large part of theory uncertainty.
- Theoretical treatment $B \rightarrow X_s \gamma$ photon energy moments is model dependent, needs to be improved.

EXTRA SLIDES

THEORETICAL VS. EXPERIMENTAL UNCERTAINTIES

Theoretical uncertainties are larger than experimental ones.

$B \to X_c \ell \bar{\nu}$			OPE I	FIT RESUL
$+ B \rightarrow X_s \gamma$	$ V_{cb} \times 10^{-3}$	m_b (GeV)	$m_c \ (\text{GeV})$	$\mu_{\pi}^2 (\text{GeV}^2)$
RESULT	41.91	4.613	1.187	0.408
$\Delta \exp$	0.19	0.022	0.033	0.017
Δ HQE	0.28	0.027	0.040	0.031
Δ $\Gamma_{ m SL}$	0.59			

BUCHMÜLLER AND FLÄCHER '07 FOR LP07 (KINETIC SCHEME)

IMPACT OF REDUCED THEORY UNCERTAINTIES

Run fit w/o theoretical uncertainties. $(B \rightarrow X_c \nu l \text{ only})$

	with theory uncertainties			w/o t	eory unc. unc. ± 0.31 ± 0.04 ± 0.061 ± 0.0217	
	value	unc.		value	unc.	
V_{cb}	41.85	$\pm 0.38 (\pm 0.58)$		41.42	± 0.31	
m_b	4.66	± 0.053		4.699	± 0.04	
m_c	1.262	± 0.078		1.312	± 0.061	
μ_{π}	0.4169	± 0.0379		0.3736	± 0.0217	
$ ho_D$	0.092	± 0.022		0.066	± 0.012	
μ_G	0.237	± 0.046		0.252	± 0.039	
$ ho_{ m LS}$	-0.139	± 0.089		-0.082	± 0.06	

thanks to H. Flächer