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OPE corresponds to expansion of the rate in 1/mb

with                .

Operator Product Expansion
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OPE corresponds to expansion of the rate in 1/mb

 

Wilson coefficients f, g, k, d, l can be calculated in 
perturbation theory, e.g.

Note: f = −k for total rate.

Operator Product Expansion
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1 Introduction

Inclusive B̄ → Xc!ν̄ decays are a precise probe of the underlying b- to c-quark transition be-
cause hadronisation effects are small and have a simple structure. These effects are suppressed
by powers of the heavy-quark mass and given in terms of a small number of non-perturbative
parameters. In the heavy-quark limit, the hadronic decay rate becomes equal to the partonic
decay rate. The leading corrections are of order 1/m2

b and are given in terms of two non-
perturbative heavy-quark parameters, µ2

π and µ2
G which are the B-meson matrix elements of

the kinetic and chromo-magnetic operator respectively. Schematically, the decay rate takes
the form [1–4]

Γ(B̄ → Xc!ν̄) =
GF |Vcb|2m5

b

192π3

{

f(ρ) + k(ρ)
µ2

π

2m2
b

+ g(ρ)
µ2

G

2m2
b

+ O(m−3
b )

}

, (1)

where ρ = m2
c/m

2
b . The coefficients f , g and k can be calculated in perturbation theory:

f = f (0)(ρ) +
αs

π
f (1)(ρ) +

(αs

π

)2
f (2)(ρ) + O(α3

s) , etc. (2)

The general structure of the expansion is the same for other observables, such as partial rates or
moments of the decay spectrum, but the calculable coefficients f , g and k are different. For the
total rate the kinetic corrections have the same coefficient as the leading order, k(ρ) = −f(ρ).
Also for other observables, such as partial rates and moments, the kinetic corrections can be
obtained from the leading-power differential rate, but the relations are more complicated and
are evaluated to O(αs) for the first time in this paper.

To turn (1) into a precision determination of |Vcb| one needs the values of mb, mc and the
heavy-quark parameters. Since the same parameters enter moments of the decay spectrum, one
can determine these parameters by measuring not only the rate, but also a number of moments.
To this end, lepton energy moments and hadronic invariant mass and energy moments are
measured [5–12]. Using the results of these measurements, several groups have performed fits
of the theoretical expressions to the experimental data [13–16]. The theoretical expressions
that are used in the fit include one-loop corrections to the leading-power coefficients f(ρ)
[17–26] as well as the β0α2

s-part of the two-loop corrections [26–30], while the coefficients
g(ρ) and k(ρ) of the power corrections are known only at the tree level. In addition to the
second-order power corrections proportional to µ2

π and µ2
G, the fits also include the third-

order power corrections, which involve two additional hadronic parameters, ρ3
D and ρ3

LS [31]
(the fourth order corrections are now available as well [32]). This technique yields the most
precise determination of |Vcb| together with very precise determinations of the heavy-quark
masses. Already now, the estimated theoretical uncertainties are somewhat larger than the
experimental ones [15]. In the future the experimental uncertainty will decrease further: the
BaBar moment measurements which were used in [14,15] were published in 2004 and are based
on 50 fb−1 of data [5, 6]1, and the recently published Belle measurements on 140 fb−1 [11, 12],
but combined the two experiments have already collected more than 1 ab−1 of data. Also,
based on the convergence of the perturbative series of the rate for τ -decay and based on

1Very recently, Babar has presented preliminary results for hadronic moments based on 210 fb−1 [33].
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OPE corresponds to expansion of the rate in 1/mb

 

Non-perturbative parameters μπ, μG, ρD, ρLS  are matrix 
elements of local operators in HQET, e.g.

scale like 

Operator Product Expansion
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(ΛQCD)n

3 Misc

3.1 Matrix elements

The matrix elements of the HQET operators are

〈Okin〉 ≡
1

2MB
〈B̄(pB)| h̄v(iD)2hv |B̄(pB)〉 = λ1 = −µ2

π , (34)

〈Omag〉 ≡
1

2MB
〈B̄(pB)|

gAmag

2
h̄vσµνG

µνhv |B̄(pB)〉 = 3λ2 = µ2
G ,

〈Omag〉 ≡
1

2MB
〈B̄(pB)|

g

2
h̄vσµνG

µνhv |B̄(pB)〉 = 3λ2 = µ2
G ,

〈O3〉 ≡
1

2MB
〈B̄(pB)| h̄v hv |B̄(pB)〉 = 1 +

λ1 + 3λ2

4m2
b

,

Note: there is a sign mistake in some of the λ2 matrix elements in Manohar and Wise’s book,
but their equation (6.58) refers to the ”right” sign.

3.2 Tree-level results

Gluon emission from charm quark (for mb = 1 and v = (1, 0, 0, 0))

D1 =
8gs

3

1

(p2
c − m2

c)
2

[

16E3
c − 8p2

cE
2
c + 32EeE

2
c − 20E2

c + 16E2
eEc + 8Eem
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cEc + 6p2
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em
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ep
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(35)

Gluon emission from the external lines:

D2 + D3 =
4gs

3

1

p2
c − m2

c
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− 5 − 6E2
c + 3p2

cEc − 16EeEc + 13Ec − 10E2
e + 3Eep

2
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c + 13Ee
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1
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c

(

2p4
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c p
2
c − 4EcEep

2
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c − 12E2
c + 8EcE

2
e (36)

− 8E2
e + 8Ec + 16E2

c Ee − 20EcEe + 8Ee − 2
)

]

(37)

Obviously, one could eliminate the p2
c by canceling them against denominators, but I have not

done this here and directly give the result of the traces. Note that the EOM contributions
have been eliminated in both cases.

This is the coefficient of h̄v σµνGµν hv. The contribution to the rate is

1

2

∫

dp2
c

2π

∫

[dΠb→c+#+ν] Im [D1 + D2 + D3] ×
6λ2

m2
b

. (38)
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determination of 
Need the values of the quark masses mc and mb  and 
matrix elements μπ, μG, ρD, ρLS  to obtain a precise value 
of |Vcb|.
Can be obtained from spectral moments

OPE for moments involves same matrix elements
and different, calculable Wilson coefficients.

6

|Vcb|

〈En
l Em

X (M2
X)l)〉 =

1
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∫
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Moment analysis

Two independent implementations:
Bauer, Ligeti, Luke, Manohar and Trott ’01 and ‘04
Buchmüller and Flächer ‘05 (fit) using Benson, Bigi, Gambino, 
Uraltsev ’04 (calculations)

+ improved codes used by Babar, Belle and HFAG.

Moment 
measurements

OPE 
expressions

Fit

|Vcb|,mb,mc

µ2
π, µ2

G,

ρ3
D, ρ3

LS

7

see Ch. Schwanda’s talk
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HFAG, ICHEP ’08

Most precise value of |Vcb|. Exclusive determination 
gives                                                   (J. Laiho’s talk), 
and precise value of mb, crucial input for |Vub|.  

9/5/08 3:43 PMGlobal Fit in the Kinetic Scheme

Page 1 of 2http://www.slac.stanford.edu/xorg/hfag/semi/ichep08/gbl_fits/kinetic/index.html

Global Fit in the Kinetic Scheme to the Moments

in B -> Xclnu and B -> Xsgamma

The fit uses all public moment measurements of the hadronic mass and lepton energy distributions in B ->
Xclnu and photon energy distribution in B -> Xsgamma decays where correlation matrices are available. It

follows closely the approach of Phys.Rev. D78 (2008) 032016.

It is based on calculations in Eur.Phys.J. C34 (2004) 181-189 and Nucl.Phys. B710 (2005) 371-401.
Theoretical errors concerning the accuracy in the expression for a given moment have been assigned
following the recipes given by the authors of the above publications.

Fit Results in the Kinetic Scheme

Input |Vcb| (10-3) mb
kin

(GeV)

mu2
pi

(GeV2)

chi2/ndf.

all moments (Xclnu and

Xsgamma)

41.67 +/- 0.43(fit) +/-
0.08(tauB) +/- 0.58(th)

4.601 +/-
0.034

0.440 +/-
0.040

details 29.7 /
(64-7)

Xclnu only 41.48 +/- 0.47(fit) +/-
0.08(tauB) +/- 0.58(th)

4.659 +/-
0.049

0.428 +/-
0.044

details 24.1 /
(53-7)

Figures of the Delta chi2=1 ellipses can be found here:

in the mb vs. |Vcb| plane: eps, pdf

in the mb vs. mu2
pi plane: eps, pdf

Fit input

We consider two data samples for the fit (Table 1), using:

1. the full set of input data currently available
2. only the semileptonic moments, i.e., hadron and lepton moments only

Table 1. The list of the moment measurements that form the basis for the combined fit. The symbol 'n'
indicates the order of the moment while 'c' indicates the value of the minimum lepton or photon energy (in

GeV) with which the moments are measured.

Experiment Hadron moments Lepton moments Photon
moments

References

fit result

8

Abstract

We present the first lattice QCD calculation of the form factor for B → D∗!ν with three flavors

of sea quarks. We use an improved staggered action for the light valence and sea quarks (the MILC

configurations), and the Fermilab action for the heavy quarks. The form factor is computed at

zero recoil using a new double ratio method that yields the form factor more directly than the

previous Fermilab method. Other improvements over the previous calculation include the use of

much lighter light quark masses, and the use of lattice (staggered) chiral perturbation theory in

order to control the light quark discretization errors and chiral extrapolation. We obtain for the

form factor, FB→D∗(1) = 0.921(13)(20), where the first error is statistical and the second is the

sum of all systematic errors in quadrature. Applying a 0.7% electromagnetic correction and taking

the latest PDG average for FB→D∗(1)|Vcb| leads to |Vcb| = (38.7 ± 0.9exp ± 1.0theo) × 10−3.

PACS numbers: 12.38.Gc, 13.25.Hw, 12.15.Hh
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Scheme Choice
Pole-scheme for HQET parameters leads to large perturbative 
corrections, use improved definitions: kinetic-, 1S- , potential-
subtracted or shape function scheme, ...

common goal of these schemes: reduce IR sensitivity by 
removing ΛQCD renormalon of pole mass.

Currently two fits are performed by HFAG, based
1S-scheme and kinetic scheme 
Seizable two-loop effects in conversion of mb between 
schemes! → Two-loop effects in moments will also be 
important, at least in one of the schemes.

Note: mb is an important input for |Vub| determination .
Performed in the shape-function scheme.  Bosch, Neubert, Lange 
and Paz ’05 and in kinetic scheme.  Gambino, Giordano, Ossola and 
Uraltsev ‘07 

9
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NNLO
NEW: Full two-loop calculation of leading power rate!

β0 αs2 known before Aquila, Gambino, Ridolfi and Uraltsev ’05 + 
many earlier partial results 

Agreement between two independent calculations
Analytical, expansion in mc/mb. Czarnecki and Pak ‘08

total rate and lowest two moment in lepton and 
hadron-energy.

Numerical Melnikov ‘08

arbitrary moments with arbitrary cuts
Corrected earlier estimate of the correction to the rate.

11

Czarnecki, Dowling and Pak ‘08 
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Lepton energy moments, normalized to tree-level rate

The BLM-corrections were known before and are included 
in fit [                  ]. The new, non-BLM, terms have 
opposite sign.

Leads to a ~ 1% reduction in |Vcb| (pole scheme).
Fit in kinetic scheme includes an estimate of non-BLM 
terms, further reduction is 0.25 x 10-3 ~ 0.6%.

Shift in 1S scheme is -0.14 x 10-3.

NNLO results

12

L0 = 1− 1.78
(αs

π

)
+

(αs

π

)2 [
− 1.92BLMβ0 + 3.40

]

L1 = 0.307

{
1− 1.79

(αs

π

)
+

(αs

π
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− 2.01BLMβ0 + 3.61

]}

L2 = 0.102

{
1− 1.82

(αs

π

)
+

(αs

π

)2 [
− 2.11BLMβ0 + 3.83

]}

β0 = 8.33
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Lepton moments, but now normalized to the total rate

with a cut El >1 GeV

In either case, the corrections are small! Looks like 
small correction for mb.

Lepton Moments
K. Melnikov, arXiv:0803.0951

13

L0 = 1

L1 = 0.307
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1− 0.02

(αs

π
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+

(αs

π
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π
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+

(αs

π
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L0 = 0.815
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(αs

π
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+

(αs

π

)2 [
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(αs

π

)
+
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+
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Power Corrections at NLO

The one-loop corrections to the Wilson coefficient of the 
power suppressed kinetic- and chromo-magnetic 
contribution, k(ρ) and g(ρ), give effects of the same order 
of magnitude as two-loop f(ρ).

Have evaluated one-loop kinetic corrections to 
moments, 
chromo-magnetic corrections in progress.

1 Introduction

Inclusive B̄ → Xc!ν̄ decays are a precise probe of the underlying b- to c-quark transition be-
cause hadronisation effects are small and have a simple structure. These effects are suppressed
by powers of the heavy-quark mass and given in terms of a small number of non-perturbative
parameters. In the heavy-quark limit, the hadronic decay rate becomes equal to the partonic
decay rate. The leading corrections are of order 1/m2

b and are given in terms of two non-
perturbative heavy-quark parameters, µ2

π and µ2
G which are the B-meson matrix elements of

the kinetic and chromo-magnetic operator respectively. Schematically, the decay rate takes
the form [1–4]

Γ(B̄ → Xc!ν̄) =
GF |Vcb|2m5

b

192π3

{

f(ρ) + k(ρ)
µ2

π

2m2
b

+ g(ρ)
µ2

G

2m2
b

+ O(m−3
b )

}

, (1)

where ρ = m2
c/m

2
b . The coefficients f , g and k can be calculated in perturbation theory:

f = f (0)(ρ) +
αs

π
f (1)(ρ) +

(αs

π

)2
f (2)(ρ) + O(α3

s) , etc. (2)

The general structure of the expansion is the same for other observables, such as partial rates or
moments of the decay spectrum, but the calculable coefficients f , g and k are different. For the
total rate the kinetic corrections have the same coefficient as the leading order, k(ρ) = −f(ρ).
Also for other observables, such as partial rates and moments, the kinetic corrections can be
obtained from the leading-power differential rate, but the relations are more complicated and
are evaluated to O(αs) for the first time in this paper.

To turn (1) into a precision determination of |Vcb| one needs the values of mb, mc and the
heavy-quark parameters. Since the same parameters enter moments of the decay spectrum, one
can determine these parameters by measuring not only the rate, but also a number of moments.
To this end, lepton energy moments and hadronic invariant mass and energy moments are
measured [5–12]. Using the results of these measurements, several groups have performed fits
of the theoretical expressions to the experimental data [13–16]. The theoretical expressions
that are used in the fit include one-loop corrections to the leading-power coefficients f(ρ)
[17–26] as well as the β0α2

s-part of the two-loop corrections [26–30], while the coefficients
g(ρ) and k(ρ) of the power corrections are known only at the tree level. In addition to the
second-order power corrections proportional to µ2

π and µ2
G, the fits also include the third-

order power corrections, which involve two additional hadronic parameters, ρ3
D and ρ3

LS [31]
(the fourth order corrections are now available as well [32]). This technique yields the most
precise determination of |Vcb| together with very precise determinations of the heavy-quark
masses. Already now, the estimated theoretical uncertainties are somewhat larger than the
experimental ones [15]. In the future the experimental uncertainty will decrease further: the
BaBar moment measurements which were used in [14,15] were published in 2004 and are based
on 50 fb−1 of data [5, 6]1, and the recently published Belle measurements on 140 fb−1 [11, 12],
but combined the two experiments have already collected more than 1 ab−1 of data. Also,
based on the convergence of the perturbative series of the rate for τ -decay and based on

1Very recently, Babar has presented preliminary results for hadronic moments based on 210 fb−1 [33].

1

with ρ = m2
c/m2

b

TB, Boos and Lunghi, arXiv:0710.0680 
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TB, Lange, Lunghi; Mannel et al.
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One-loop kinetic corrections     
To get kinetic correction, one needs to expand one-loop rate 
in residual momentum pbμ = mb vμ + rμ.

Two ways of doing this matching calculation:
expand partonic rate in rμ before or after loop and phase-
space integration. Since on-shell HQET matrix elements 
are trivial, the expansion commutes with loop integration.

As a check on our result and its numerical accuracy, we 
have performed the calculation both ways.

Expanding after integration is more elegant and more 
subtle.

Expanding before integration somewhat tedious but a good 
warm up for calculation of chromo-magnetic corrections.

15
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Results for Partonic Moments

Small correction for moments which are of “natural size”.
Expect chromo-magnetic corrections to be more 
important, since tree-level corrections are few times larger.

Êl = El/mb > 1/4.6with cut and mc

mb
= 1/4

αs

π
≈ 0.07

µ2
π

2m2
b

≈ 0.01

1 αs

π
µ2

π

2m2

b

αs

π
µ2

π

2m2

b

%

1 0.5149(3) −0.910(3) −0.5692(6) 0.987(8) 0.1

Êl 0.1754(1) −0.314(1) 0.0109(3) −0.024(3) 0.

Ê2
l 0.06189(5) −0.1128(5) 0.1105(1) −0.202(1) −0.2

Ê3
l 0.02251(2) −0.0418(2) 0.09269(5) −0.1722(7) −0.6

Êx 0.2111(1) −0.365(1) −0.5694(2) 1.010(3) 0.4

Ê2
x 0.08917(7) −0.1482(7) −0.3378(1) 0.576(1) 0.5

Ê3
x 0.03867(4) −0.0606(4) −0.16898(6) 0.2639(7) 0.5

(p̂2
x − ρ) 0 0.03618(2) −0.6855(2) 1.213(2) −25.5

(p̂2
x − ρ)2 0 0.002808(2) 0.15198(4) −0.4388(5) −21.6

(p̂2
x − ρ)3 0 0.0004053(3) 0 0.020998(4) 32.9

Êx(p̂2
x − ρ) 0 0.01801(1) −0.20707(6) 0.2961(8) −39.2

Êx(p̂2
x − ρ)2 0 0.0015307(10) 0.06794(2) −0.1897(3) −20.1

Ê2
x(p̂

2
x − ρ) 0 0.009147(6) −0.05271(2) 0.0304(3) 12.4

Table 2: Coefficients of the perturbative and power corrections to the the moments (41) with
4.6Êl > 1 and mc/mb = 1/4. Perturbative corrections are given in units of αs/π, the power
corrections in units of µ2

π/(2m2
b). All entries need to be multiplied by the common factor

G2
F |Vcb|2m5

b/(192π3). The numbers in the table correspond to the partonic moments in the
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numerical results for arbitrary cut energies and charm-mass values can be obtained from the
authors.

Instead of the partonic moments, experimental papers present results for the normalized
hadronic moments
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To translate the results to hadronic kinematics we note that leptonic quantities are identical
on the hadronic and partonic level. Using that the B-meson momentum is pµ

B = MB vµ, it
follows that

EX = MB − v · q = MB − mb + Ex , (43)

p2
X = (pB − q)2 = p2

x + 2Ex(MB − mb) + (MB − mb)
2 . (44)

With these two equations, it is straightforward to translate our partonic results into hadronic
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Results for Partonic Moments

Large corrections for those moments that vanish at leading 
power.

The corrections will change the extracted value of μπ2 
by about 20-30% in the pole scheme (maybe less with a 
better scheme).
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       Corrections
Heavy quark expansion has been carried out one order 
further for rate and moments.
Five additional hadronic parameters s1, ... , s5. 
Using “naive factorization” estimate for these 
parameters, the effects are found to be small unless high 
moments are considered.

e.g. 
Can either try to extract s1, ... , s5  from moment fit, or scan 
over some range to estimate theoretical 1/mb4 uncertainty.

18

Dassinger, Mannel and Turczyk ‘06
1/m4

b

In tables 1 and 2 we tabulate the values of the coefficients in (4.5) and (4.6) for those
coefficients which are practically independent of Ecut.

As pointed out above, only the coefficients f (1)
i of the first hadronic moment depend on Ecut

in a substantial way. Figs. 2 and 3 show the dependence of the five functions on the energy cut.
Finally we shall also study the overall effect of theO(1/m4

b) contributions. In order to do this
we have to insert numerical values for the nonperturbative parameters. We use the relations
(3.19) and the values obtained from the fit in [10] for the lower order basic parameters. In
table 3 we list the values from [10] for reference; in table 4 we list the values of the basic
parameters at 1/m4

b obtained from our guestimate.

Parameter µ2
π (GeV)2 µ2

G (GeV)2 ρ3
LS (GeV)3 ρ3

D (GeV)3

Value 0.401 0.297 -0.183 0.174

Table 3: Values taken from Buchmüller and Flächer. We do not show the uncertainties, which
are at the level of 15%.

Parameter s1 (GeV)4 s2 (GeV)4 s3 (GeV)4 s4 (GeV)4 s5 (GeV)4

Value -0.076 0.148 0.161 -0.119 -0.119

Table 4: Our guess for the basic Parameters si which is used in the numerical analysis.

Inserting for the masses the values mb = 4.59 GeV and mc = 1.142 GeV from [10] we obtain
for the contributions to the moments for a lepton energy cut of 0.8 GeV the values shown
in table 5. As pointed out above, the 1/m4

b contributions to the lepton energy moments are
practically independent of Ecut, while the dependence on Ecut of the hadronic moments is given
by the functions f (1)

i .

n 1 2 3 4
δ(4)〈Mn

X〉 -0.1835 GeV -0.0104 GeV2 0.185 GeV3 0.1064 GeV4

δ(4)〈En
e 〉 0.0066 GeV 0.0154 GeV2 0.0351 GeV3 0.0803 GeV4

Table 5: Numerical values for the contribution of order 1/m4
b using the parameters from table 4.

The contribution to the total rate is very small; using our estimates for the parameters si

we get
δ(4)Γ

Γ
≈ 0.25%

resulting in a completely negligible shift of the central value of Vcb from the terms of the order
1/m4

b .

5 Conclusions

In this paper we presented the complete result for theO(1/m4
b) contributions to the semileptonic

rate at tree level. Although we have in total five new, non-perturbative parameters, we can use
the known matrix elements to order O(1/m3

b) to estimate the size of the contributions.
It turns out that the size of the 1/m4

b terms is “normal”, i.e. we do not see any abnormally
large coefficients in the 1/mb expansion, at least in this tree level calculation.

9
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Error estimates
How do the newly calculated results compare to earlier 
error estimates?

Moment fit in kinetic scheme estimated

Full NNLO value:                           ✓
Fit in 1S scheme estimated uncertainty from non-BLM 
two-loop piece to be half of of the BLM piece. This 
amounts to a 1.5% of the tree-level rate, 3x more than 
the actual correction.    ✓

19

Apert = 0.919

Apert =
Γ(B → Xc!ν)
Γ(B → Xc!ν)|tree

= 0.908 ± 0.009
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Power corrections
For αs-corrections to 1/mb2 terms:

Kinetic scheme fit estimates those by varying μπ and 
μG by 20%.
1S fit estimates them to be

Calculation of kin. corr typically gives values

Larger than 1S estimate, as expected in kin. fit.

20

αs

4π

(
ΛQCD

mb

)2

∼ 0.0002

8× αs

4π

(
ΛQCD

mb

)2

= 0.15
(

ΛQCD

mb

)2
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To Do
Finish O(αs) calculation of chromomagnetic Wilson coefficient, 
g(ρ).

if possible evaluate also O(αs) for d(ρ) the coefficient of ρD, 
which is 1/mb3 but numerically large.

Implement new corrections into moment fit codes
Convert from pole to other schemes: kinetic, 1S, shape-
function scheme, ...
What form is most convenient? Grid of values, expansion 
around default values?

This will largely eliminate theoretical uncertainties from 
moment fit.

increased precision and better consistency check
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“Intrinsic Charm”
In the standard OPE,                                 charm quarks 
are integrated out in perturbation theory, such that no 
operators with c-quarks have to be considered.
Can instead assume                                  and perform the 
OPE in two steps:

First integrate out physics associated with             . 
OPE includes operators with c-quarks, e.g.

Then integrate out charm.
Second step is an expansion in 1/mc.

23

mb ∼ mc " ΛQCD

mb ! mc ! ΛQCD

µ ∼ mb

Note that for mb ∼ mc the logarithm is actually of order one and represents a regular con-
tribution to the matching coefficient (and therefore the remaining terms in curly brackets
enter on the same level). Also, the phase space boundary for y is y < 1− ρ which is away
from y = 1 by an amount of order one.

A similar logarithmically enhanced term also appears in the partonic rate,

Γ
∣∣∣
partonic

=
G2

F m5
b

192π3
|Vcb|2

{
1− 12 ρ2 ln ρ + . . .

}
, (8)

and in the related moment,

〈1− y〉
∣∣∣
partonic

=
G2

F m5
b

192π3
|Vcb|2

{
6 ρ2 ln ρ + . . .

}
. (9)

In contrast to the Darwin-term contribution, the logarithmic term vanishes in the limit
ρ → 0. Nevertheless, as has been shown in [16], such “phase-space logs” can be resummed
into short-distance coefficients, as we are going to discuss in the following.

2.2 mb & mc & ΛQCD

When we integrate out the b quark first at a scale µh ∼ mb and still keep the charm quark
dynamical, we have to take into account operators with explicit charm quarks until those
are finally integrated out at the semi-hard scale µsh ∼ mc. In addition to the dimension-
5 and dimension-6 operators, defining µ2

π, µ2
G and ρ3

D, ρ3
LS, one thus finds (at tree level)

matrix elements of the local “intrinsic-charm” operators

2MB W IC
µν = (2π)4 δ4(q −mbv) 〈B̄(p)|(b̄v γνPL c) (c̄ γµPL bv)|B̄(p)〉

+ (2π)4

(
∂

∂qα
δ4(q −mbv)

)
〈B̄(p)|(i∂α b̄v γνPL c) (c̄ γµPL bv)|B̄(p)〉

+ . . . , (10)

which can be interpreted as the probability to find semi-hard (i.e. off-shell) charm quarks
inside the heavy B̄-meson.

Notice, that the power-counting for the semi-hard charm fields [c] = (mc)3/2 is now
different from the ones for soft HQET fields [bv] = Λ3/2, and therefore it may be convenient
to use a notation as in [19], where the “intrinsic-charm” operators in the first line of (10)
are suppressed by λ3 ≡ (mc/mb)3, the ones in the second line by λ4, the kinetic and
chromomagnetic operators by λ4 ≡ (Λ/mb)2, and the Darwin and spin-orbit term by λ6.
Due to chiral symmetry, only the λ4 “intrinsic-charm” operators contribute to the partonic
rate for b → c'ν, related to the ρ2 ln ρ term in (8). Additional soft gluon couplings to
semi-hard charm quarks are further suppressed, and this will give rise to the λ6 suppressed
terms ρ3

D ln ρ in (6), descending from the λ3 “intrinsic-charm” operators.
Let us consider first the matrix elements of the operator in the first line of (10). They

may be decomposed in terms of two hadronic parameters, T1(µ) and T2(µ),

(4π)2 〈B̄(p)|b̄v γνPL c c̄ γµPL bv|B̄(p)〉 = 2MB (T1(µ) gµν + T2(µ) vµvν) . (11)

4

Bigi, Uraltsev, Zwicky ’05; Breidenbach, Feldmann, Mannel, Turczyk’08
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“Intrinsic Charm”
Leading terms from the expansion in 1/mc scale as

In the standard counting 1/mb5 and αs/mb4 , but enhanced 
compared to other contributions.
Numerical estimate gives

N.B. effect has little or nothing to do with “intrinsic 
charm” in exclusive decays.

24

4 Discussions and conclusions

With |Vcb| and other heavy quark parameters like mb and mc having been extracted
from B → lνXc with high precision, scrutinizing even small contributions comes onto
the agenda. In this paper we have analyzed the effects of the nonperturbative QCD
interactions of charm quarks in inclusive decays of B hadrons, specifically semileptonic
b→c "ν transitions. These effects had so far not been included in practical applications of
the OPE; allowance for them was made in Ref. [8] in assessing the theoretical uncertainty.

Inclusive weak decays of heavy flavor hadrons admit a local OPE, which is crucial for
our analysis. It allows us to study nonperturbative charm effects in a model-independent
manner. We have shown that these contributions have a well-defined meaning in the
OPE described by expectation values of four-heavy-quark operators like 〈B|b̄Γcc̄Γb|B〉
(or similar operators with additional derivatives once terms of higher order in 1/mb are
considered). The OPE actually requires the inclusion of these four-heavy-quark operator
terms, and they cover the impact of the soft-charm dynamics on B decays without double-
or undercounting. For inclusive widths they scale with mb like 1/m3

b .
The expectation values 〈B|b̄Γcc̄Γb|B〉 can be evaluated, through an expansion in pow-

ers of 1/mc, in terms of the higher-dimensional ‘usual’ heavy quark operators, i.e. those

without charm quarks. Ignoring radiative QCD effects we obtain terms scaling like
Λ2

QCD

m2
c

for an overall contribution ∝ Λ5
QCD

m2
cm3

b

. Yet once hard gluons are considered, there appear

contributions in the rate which fade out only as the first power of 1/mc, αs(mc)
Λ4

QCD

mcm3
b

. In

the picture where nonperturbative charm emerges through the higher Fock states in the
B meson wavefunction (so-called ‘Intrinsic Charm’, see below) these terms describe the
interference of the effects with and without a cc̄ pair made possible through hard gluon
annihilation.

For a numerical evaluation of the nonperturbative charm effects we have elaborated
a method for estimating the higher-dimensional b quark expectation values; it can be
used in other applications of the heavy quark expansion as well. We also found a strong
enhancement of the two-loop Wilson coefficients for the D=7 operators (i.e., O

(

αs(mc)
m1

c

)

effects) evidently related to the peculiarity of the Coulomb interaction of static quarks.

It could potentially lead to the dominance of the O
(

αs

mc

)

contributions with individual
ones as large as half a percent. However, we found significant cancellations between
different contributions, see Table 2. In view of the approximations in both calculating the
Wilson coefficients and in estimating the corresponding expectation values, we cannot take
the resulting sub-permill numbers at face value. However, a net contribution exceeding
0.005 Γsl looks improbable.

As a result of the above cancellations an appreciable effect might be expected from
D=8 operators with the Wilson coefficients generated at one loop. The natural scale of
these contributions can be a few permill in Γsl; explicit calculations led us to expect an
overall effect of about 0.003 Γsl. Even considering the approximate nature of our estimates,
we conclude that the effects associated with nonperturbative charm dynamics should not
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δΓs.l.

Γs.l.
≈ 0.003
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“Intrinsic Charm”
Leading terms from the expansion in 1/mc scale as

In the standard counting 1/mb5 and αs/mb4 , but enhanced 
compared to other contributions.
Numerical estimate gives

N.B. effect has little or nothing to do with “intrinsic 
charm” in exclusive decays.
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manner. We have shown that these contributions have a well-defined meaning in the
OPE described by expectation values of four-heavy-quark operators like 〈B|b̄Γcc̄Γb|B〉
(or similar operators with additional derivatives once terms of higher order in 1/mb are
considered). The OPE actually requires the inclusion of these four-heavy-quark operator
terms, and they cover the impact of the soft-charm dynamics on B decays without double-
or undercounting. For inclusive widths they scale with mb like 1/m3

b .
The expectation values 〈B|b̄Γcc̄Γb|B〉 can be evaluated, through an expansion in pow-

ers of 1/mc, in terms of the higher-dimensional ‘usual’ heavy quark operators, i.e. those

without charm quarks. Ignoring radiative QCD effects we obtain terms scaling like
Λ2

QCD

m2
c

for an overall contribution ∝ Λ5
QCD

m2
cm3

b

. Yet once hard gluons are considered, there appear

contributions in the rate which fade out only as the first power of 1/mc, αs(mc)
Λ4

QCD

mcm3
b

. In

the picture where nonperturbative charm emerges through the higher Fock states in the
B meson wavefunction (so-called ‘Intrinsic Charm’, see below) these terms describe the
interference of the effects with and without a cc̄ pair made possible through hard gluon
annihilation.

For a numerical evaluation of the nonperturbative charm effects we have elaborated
a method for estimating the higher-dimensional b quark expectation values; it can be
used in other applications of the heavy quark expansion as well. We also found a strong
enhancement of the two-loop Wilson coefficients for the D=7 operators (i.e., O

(

αs(mc)
m1

c

)

effects) evidently related to the peculiarity of the Coulomb interaction of static quarks.

It could potentially lead to the dominance of the O
(

αs

mc

)

contributions with individual
ones as large as half a percent. However, we found significant cancellations between
different contributions, see Table 2. In view of the approximations in both calculating the
Wilson coefficients and in estimating the corresponding expectation values, we cannot take
the resulting sub-permill numbers at face value. However, a net contribution exceeding
0.005 Γsl looks improbable.

As a result of the above cancellations an appreciable effect might be expected from
D=8 operators with the Wilson coefficients generated at one loop. The natural scale of
these contributions can be a few permill in Γsl; explicit calculations led us to expect an
overall effect of about 0.003 Γsl. Even considering the approximate nature of our estimates,
we conclude that the effects associated with nonperturbative charm dynamics should not
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or

δΓs.l.

Γs.l.
≈ 0.003

Bigi, Uraltsev, Zwicky ’05

muliplied by d(ρ), can be absorbed into redefinition of ρD

  Breidenbach, Feldmann, Mannel, Turczyk’08
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Quark-Hadron Duality
Expanding in 1/mb one looses non-analytic terms of the 
form

Model calculations Shifman ‘00 give high value n=8 
suppression relative to leading term for semileptonic 
decay rate.

if so, these effects are tiny
Oscillatory terms due to resonances and get averaged 
away in sufficiently inclusive quantities. 

Effects can become bigger once cuts are applied
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Duality in  
To my knowledge all model studies were done for totally 
inclusive b→u rate, but b→c situation seems quite 
different.
Lowest resonances essentially saturate B→Xc l ν

~ 80%  Xc = D or D*

~ 5-10% Xc = D**

Lowest states (π, η, ρ, ω) amount to ~ 30% of B→Xu l ν

It would be interesting to specifically try to study duality 
violation in “heavy quark ” → “heavy quark” decays.
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Moment fit currently also includes                 photon energy 
moments with cut on Eγ > 1.8 GeV

Because of the hard cut they cannot be reliably calculated 
using the standard OPE.

Non-perturbative shape function, even at leading power. 
Current fits either use OPE directly (1S) or use shape 
function model (kin. scheme) “bias correction”.
Until the uncertainty from the shape function is estimated, 
these moments should not be included in fit.
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Summary
Moment analysis of B→Xc l ν provides most precise value 
of |Vcb| and crucial input (mb,μπ2) for |Vub| determination
Efforts to push the calculation of inclusive B decays to 
NNLO are far along.

Two-loop calculations of rate and moments complete.
One-loop corrections to power suppressed terms:

Evaluation of kinetic corrections complete,
chromo-magnetic corrections in progress.

Corrections need to be implemented into fitting codes.
This will eliminate large part of theory uncertainty.

Theoretical treatment B→Xsγ photon energy moments is 
model dependent, needs to be improved.
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Theoretical vs. experimental uncertainties

Theoretical uncertainties are larger than experimental 
ones.

Buchmüller and Flächer ’07 for LP07  (kinetic scheme)

3

TABLE II: Results for the combined fit to all moments with experimental and theoretical uncertainties. For |Vcb| we add
an additional theoretical error stemming from the uncertainty in the expansion for ΓSL of 1.4%. Below the fit results the
correlation matrix is shown.

B → Xc!ν̄ OPE FIT RESULT: χ2/Ndof =39.1/62

+ B → Xsγ |Vcb| ×10−3 mb (GeV) mc (GeV) µ2
π (GeV2) ρ3

D (GeV3) µ2
G (GeV2) ρ3

LS (GeV3) BRc"ν̄ (%)
RESULT 41.91 4.613 1.187 0.408 0.191 0.261 -0.195 10.64
∆ exp 0.19 0.022 0.033 0.017 0.008 0.019 0.052 0.09

∆ HQE 0.28 0.027 0.040 0.031 0.019 0.035 0.068 0.07
∆ ΓSL 0.59
|Vcb| 1.000 -0.450 -0.315 0.495 0.311 -0.275 0.070 0.674
mb 1.000 0.962 -0.525 -0.225 -0.226 -0.211 0.121
mc 1.000 -0.536 -0.310 -0.448 -0.100 0.152
µ2

π 1.000 0.750 0.230 0.071 0.126
ρ3

D 1.000 0.185 -0.507 0.123
µ2

G 1.000 -0.034 -0.160
ρ3

LS 1.000 -0.070
BRc"ν̄ 1.000

FIG. 1: Comparison of the different fit scenarios. Figure (a) shows the ∆χ2 = 1 contour in the (mb,µ
2
π) plane for the combined

fit to all moments (red), the fit to hadron and lepton moments only (blue) and the fit to photon moments only (green). Figure
(b) shows the results for the combined fit (red) and the fit to hadron and lepton moments only (blue) in the (mb,|Vcb|) plane.

and determine the ∆χ2 = 1 contour with respect to χ2
min.

For the translation into the Shape-Function
scheme [23, 24] we use a grid of moments obtained
with a Mathematica notebook based on Ref. [25–28] that
was provided to us by the authors. In this calculation
the moments are determined from a spectrum that
is obtained by convoluting a shape function with a
perturbative kernel with next-to-leading order accuracy,

TABLE III: First and second moment of the photon spectrum
predicted for Ecut = 1.6 GeV on the basis of the fit results for
the HQE parameters.

Ecut(GeV) 〈Eγ〉(GeV) 〈(Eγ − 〈Eγ〉)2〉(GeV2) ρ

1.6 2.297 ± 0.016 0.0431 ± 0.0030 -0.07
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Impact of reduced theory Uncertainties

Run fit w/o theoretical uncertainties. (B→Xcνl only)

value unc. value unc.
Vcb 41.85 ±0.38(±0.58) 41.42 ±0.31
mb 4.66 ±0.053 4.699 ±0.04
mc 1.262 ±0.078 1.312 ±0.061
µπ 0.4169 ±0.0379 0.3736 ±0.0217
ρD 0.092 ±0.022 0.066 ±0.012
µG 0.237 ±0.046 0.252 ±0.039
ρLS −0.139 ±0.089 −0.082 ±0.06

with theory uncertainties w/o theory unc.

thanks to H. Flächer
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