

Inclusive moment measurements and determination of $|V_{cb}|$ and m_b

Christoph Schwanda, HEPHY Vienna representing the Belle collaboration

5th Workshop on the Unitarity Triangle September 9-13, 2008, Roma, Italy

Semileptonic decays

• $|V_{cb}|$ and $|V_{ub}|$ are determined from semileptonic B decays

- "Old physics": tree diagrams, no 'pollution' from New Physics contributions
- A precise determination of |V_{ub}/V_{cb}| is crucial to be able to observe deviations from the CKM mechanism due to New Physics

The semileptonic width

• $\Gamma(B \rightarrow X_c lv)$ can be systematically calculated with the operator production expansion (OPE)

$$\begin{split} \Gamma_{\rm sl}(b \to c) &= \frac{G_F^2 \, m_b^5(\mu)}{192 \, \pi^3} \, |V_{cb}|^2 \, (1 + A_{\rm ew}) \, A^{\rm pert}(r, \mu) \\ & \left[z_0(r) \left(1 - \frac{\mu_{\pi}^2(\mu) + \mu_G^2(\mu) + \frac{\rho_{3}^3(\mu)}{m_b(\mu)}}{2m_b^2(\mu)} \right) & \text{from [Benson et al. Nucl. Phys. B665, 367 (2003)]} \right. \\ & - 2(1 - r) \frac{\mu_G^2(\mu) + \frac{\rho_{3}^2(\mu) + \rho_{3}^3(\mu)}{m_b^2(\mu)}}{m_b^2(\mu)} + d(r) \frac{\rho_{3}^3(\mu)}{m_b^3(\mu)} + \dots \right] \\ & \left[0 \dots \text{ HQ parameters (non-calculable; contain soft QCD physics)} \right] \end{split}$$

 At each order in 1/m_b, the expectation values of local operator products (heavy quark parameters) are multiplied by perturbatively calculable coefficients ,

Other observables in B decays

• Moments of the lepton energy spectrum in $B \rightarrow X_c I_V$

$$R_n(E_{\rm cut},\mu) = \int_{E_{\rm cut}} \left(E_\ell - \mu\right)^n \, \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \, \mathrm{d}E_\ell \,, \quad \langle E_\ell^n \rangle_{E_{\rm cut}} = \frac{R_n(E_{\rm cut},0)}{R_0(E_{\rm cut},0)}$$

• Moments of the hadronic mass spectrum in $B \rightarrow X_c I_V$

$$\langle m_X^{2n}\rangle_{E_{\rm cut}} = \frac{\displaystyle \int_{E_{\rm cut}} (m_X^2)^n \, \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2} {\displaystyle \int_{E_{\rm cut}} \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2} }$$

• Moments of the photon energy spectrum in $B \rightarrow X_s \gamma$

$$\langle E_{\gamma}^{n} \rangle_{E_{\rm cut}} = \frac{\int_{E_{\rm cut}} E_{\gamma}^{n} \frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\gamma}} \,\mathrm{d}E_{\gamma}}{\int_{E_{\rm cut}} \frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\gamma}} \,\mathrm{d}E_{\gamma}}$$

The OPEs of these inclusive observables contain the same HQ parameters

Global analysis of B decays

• Dedicated predictions for each observable

$$- \langle E^{n}_{l} \rangle_{El>Ecut} = f^{(n)}(E_{cut}, m_{b}, HQ \text{ param.})$$

$$- \langle M^{2n}_{X} \rangle_{El>Ecut} = g^{(n)}(E_{cut}, m_{b}, HQ \text{ param.})$$

$$- \langle E^{n}_{Y} \rangle_{EY>Ecut} = h^{(n)}(E_{cut}, m_{b}, HQ \text{ param.})$$

- Determine HQ parameters by performing a minimum χ^2 fit to all available moment measurements
- Take into account correlated experimental and theoretical errors
- External input: average B lifetime $\tau_B = (1.585 + 0.006)$ ps

Available calculations

- Kinetic running mass
 - [P.Gambino, N.Uraltsev, Eur.Phys.J. C34, 181 (2004)]
 - [D.Beson, I.Bigi, N.Uraltsev, Nucl.Phys. B710, 371 (2005)]
- 1S mass

 [C.Bauer, Z.Ligeti, M.Luke, A.Manohar, M.Trott, Phys.Rev. D70, 094017 (2004)]

Non-perturbative parameters in the 1/m_b expansion

	Kinetic scheme	1S scheme
O(1)	m _b , m _c	m _b
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	λ_1, λ_2
O(1/m ³ _b)	ρ_{D},ρ_{LS}	ρ ₁ , τ ₁₋₃

both calculations up to $O(1/m_b^3)$

Available measurements

- Belle E_γ, 605/fb [arXiv:0804.1580] preliminary
- BaBar \dot{E}_{I} , M^{2}_{X} , 210/fb [arXiv:0707.2670] preliminary
- Belle E_I, 140/fb [PRD 75, 032001 (2007)]
- Belle M²_X, 140/fb [PRD 75, 032005 (2007)]
- DELPHI E_I, M²_X, 3.4M Z [EPJ C45, 35 (2006)]
- BaBar, E_γ, 82/fb [PRL 97, 171803 (2006)]
- BaBar, E_γ, 82/fb [PRD 72, 052004 (2005)]
- CDF, M²_X, 180/pb [PRD 71, 051103 (2005)]
- Belle, E_γ, 140/fb [PRL 93, 061803 (2004)]
- CLEO, M²_X, 9/fb [PRD 70, 032002 (2004)]
- BaBar, E_I, 47/fb [PRD 69, 111104 (2004)]
- BaBar, M²_X, 89M BB [PRD 69, 111103 (2004)]
- CLEO, E_γ, 9/fb [PRL 87, 251807 (2001)]

BaBar M²_X moments

[arXiv:0707.2670] preliminary

- 210/fb of Y(4S) data
- Hadronic decay of one B meson fully reconstructed
- Semileptonic decay of other B selected by requiring identified lepton (e/µ)
- Reconstructed moments corrected event-by-event for detector effects
- <M^k_X> measured for k=1,...,6 and p*_{cut} from 0.8 to 1.9 GeV/c

Belle E₁ and M²_X moments [PRD 75, 032001 (2007)] [PRD 75, 032005 (2007)]

- 140/fb of Y(4S) data
- Measurement also done with fully reconstructed events
- The finite detector resolution is unfolded with SVD algorithm [NIM A372, 469 (1996)]
- $< E_e^n >$ measured for n=0,...,4 and E_{cut} =0.4-2.0 GeV
- $<M^{2n}_{X}>$ measured for n=1,2 and E_{cut}=0.7-1.9 GeV

DELPHIE and M_X^2 moments [EPJ C45, 35 (2006)]

- <Eⁿ_l>, n=1,...,3 and <M²ⁿ_X>, n=1,...,5 measured at E_{cut} = 0 as in Z events the b-quark is produced with a boost
- The hadronic moments are derived from the fitted D** mass spectrum; assumptions on the D** decay are made

$|V_{cb}|$ and m_b from the fit to the Belle moment data

[Phys. Rev. D78, 032016 (2008)]

Similar analysis recently done on the BaBar moment data [arXiv:0707.2670] preliminary

Belle measurements used

Electron moments	n=0: E _{cut} =0.6, 1.0, 1.4 GeV
<e<sup>n ></e<sup>	n=1: E _{cut} =0.6, 0.8, 1.0, 1.2, 1.4 GeV
	n=2: E _{cut} =0.6, 1.0, 1.4 GeV
	n=3: E _{cut} =0.8, 1.0, 1.2 GeV
Hadron moments	n=1: E _{cut} =0.7, 1.1, 1.3, 1.5 GeV
<m<sup>2n_X></m<sup>	n=2: E _{cut} =0.7, 0.9, 1.3 GeV
Photon moments	n=1: E _{cut} =1.8, 2.0 GeV
< E ⁿ _γ >	n=2: E _{cut} =1.8, 2.0 GeV

- Exclude measurements
 - with no (reliable) theory prediction
 - with excessive correlations

Fit result in the 1S scheme

 χ^2 /ndf. = 7.3 / (25-7)

Fit result in the kinetic scheme

 χ^2 /ndf. = 4.7 / (25-7)

Kinetic scheme ($X_c lv + X_s \gamma$ data) $|V_{cb}| = (41.58 \pm 0.69_{fit} \pm 0.08_{\tau B} \pm 0.58_{th}) \times 10^{-3}$ $m_b^{kin} = 4.543 \pm 0.075 \text{ GeV}$ $m_c^{kin} = 1.055 \pm 0.118 \text{ GeV}$

Results for m_b compatible after scheme translation

1S scheme ($X_c Iv + X_s \gamma$ data) $|V_{cb}| = (41.56 \pm 0.68_{fit} \pm 0.08_{\tau B}) \times 10^{-3}$ $m_b^{1S} = 4.723 \pm 0.055 \text{ GeV}$

HFAG ICHEP08 fit in the kinetic scheme

http://www.slac.stanford.edu/xorg/hfag/semi/ichep08/gbl_fits/kinetic/

Measurements used

BaBar	$: n=0,1,2,3$ [PRD 69, 111104 (2004)] $: n=1,2$ [arXiv:0707.2670] preliminary $: n=1,2$ [PRL 97, 171803 (2006)] and [PRD 72, 052004 (2005)]	
Belle	$: n=0,1,2,3 [PRD 75, 032001 (2007)]$ $: n=1,2 [PRD 75, 032005 (2007)]$ $: n=1,2 [arXiv:0804.1580] preliminary$	
CDF	<m<sup>2n_X>: n=1,2 [PRD 71, 051103 (2005)]</m<sup>	
CLEO	<m<sup>2n_X>: n=1,2 [PRD 70, 032002 (2004)] <e<sup>n_γ>: n=1 [PRL 87, 251807 (2001)]</e<sup></m<sup>	
DELPHI	<e<sup>n_l>: n=1,2,3 <m<sup>2n_X>: n=1,2 [EPJ C45, 35 (2006)]</m<sup></e<sup>	

• 27 moments from BaBar, 25 moments from Belle and 12 17 moments from other experiments

Input	V _{cb} (10 ⁻³)	m _b (GeV)	μ^2_{π} (GeV ²)	χ²/ndf
All moments	41.67+/-0.43(fit)+/- 0.08(τ _B)+/-0.58(th)	4.601+/- 0.034	0.440+/- 0.040	29.7/57
X _c lv only	41.48+/-0.47(fit)+/- 0.08(τ _B)+/-0.58(th)	4.659+/- 0.049	0.428+/- 0.044	24.1/46 18

Outlook

Open issues in global fits

• χ^2 puzzle

- $-\chi^2/ndf$. of global fits comes out much too low
- Are (theory) errors overestimated?
- Are correlations underestimated?
- $B \rightarrow X_s \gamma$ bias

– Inclusion of the B \rightarrow X_s γ data lowers the b-quark mass m_b

Theory correlation coefficients (HFAG data, kinetic scheme)

theory correlation coefficients in the present HFAG fit

"actual correlations", i.e., correlation coefficients derived from theory expressions using a toy MC approach

	V _{cb} (10 ⁻³)	m _b (GeV)	μ^2_{π} (GeV ²)	χ²/ndf
default	41.67+/-0.43(fit)+/- 0.08(τ _B)+/-0.58(th)	4.601+/- 0.034	0.440+/- 0.040	29.7/57
new	40.85+/-0.68(fit)+/- 0.08(τ _B)+/-0.57(th)	4.605+/- 0.031	0.312+/- 0.060	54.2/57

Summary and conclusions

- Calculations based on heavy quark effective theory and operator product expansion can reproduce inclusive observables in B decays to a high degree of precision
- Fits to the Belle/BaBar data in the kinetic scheme

	V _{cb} (10 ⁻³)	m _b (GeV)
BaBar [arXiv:0707.2670]	$41.88 \pm 0.56_{fit} \pm 0.08_{\tau B} \pm 0.59_{th}$	4.552 ± 0.055
Belle [PRD78, 032016]	$41.58 \pm 0.69_{fit} \pm 0.08_{\tau B} \pm 0.58_{th}$	4.543 ± 0.075

• Fits to Belle data in the kinetic/1S schemes [PRD78, 032016]

	V _{cb} (10 ⁻³)
kinetic scheme	$41.58 \pm 0.69_{fit} \pm 0.08_{\tau B} \pm 0.58_{th}$
1S scheme	$41.56 \pm 0.68_{fit} \pm 0.08_{\tau B}$

• ICHEP08 HFAG result in the kinetic scheme

	V _{cb} (10 ⁻³)	m _b (GeV)
HFAG ICHEP08	$41.67 \pm 0.43_{fit} \pm 0.08_{\tau B} \pm 0.58_{th}$	4.601 ± 0.034

• Open issues

- Theory error correlations

$$-B \rightarrow X_s \gamma$$
:

Can we safely use this data in the fit?

Backup

Theory error in the kinetic scheme

- Non-perturbative corrections: consider the following variations in the HQ parameters
 - $-m_{b}/m_{c}$: +/- 20 MeV
 - $-\mu^2_{\pi}/\mu^2_G$: +/- 20%
 - $-\rho^{3}_{D}/\rho^{3}_{LS}$: +/- 30%
- Perturbative corrections

 $-\alpha_{\rm S} = 0.22$ +/- 0.04

- Bias correction uncertainty ($B \rightarrow X_s \gamma$)
 - 30% of the absolute value of the bias correction

Toy MC for theory correlations

- 1. For α_s , m_b , m_c and each HQ parameter, draw a Gaussian random number within the allowed range (previous slide)
- 2. Calculate the moment predictions x_i , i=1,...,64 (HFAG data) for this set of parameters
- 3. Repeat step 1) and 2) 100,000 times
- 4. Calculate the theory correlations as:

 $\rho(\mathbf{x}_{i},\mathbf{x}_{j}) = \langle (\mathbf{x}_{i} - \langle \mathbf{x}_{i} \rangle)(\mathbf{x}_{j} - \langle \mathbf{x}_{j} \rangle) \rangle / \sigma_{\mathbf{x}i} \sigma_{\mathbf{x}j}$