CKM 2008 WGIV Report "Mixing and Lifetimes" Conveners: C. Tarantino, I.K. Furić

Introduction

- 4 sessions [Wed, Thu, Fri, Fri am], 19 talks
- covered lifetimes, mixing, CP and CPT violation
- spanning kaon, charm and beauty systems
- very lively topic: φ_s measurements and implications from global fits
- prompted break-away discussion session on Thursday

The Kaon System

Kaon system - Δm_K , ϵ_k , ϵ'/ϵ

 $B_{K}(\mu) = \langle \bar{K}^{0} | Q^{\Delta S=2} | K^{0} \rangle / \left(\frac{8}{3} f_{K}^{2} m_{K}^{2} \right) \qquad E. \text{ Scholz}$

 $|\epsilon_{K}| = C_{\epsilon} \hat{B}_{K} \lambda^{2} \bar{\eta}^{2} |V_{cb}|^{2} \Big[|V_{cb}|^{2} (1 - \bar{\rho}) \eta_{tt} S_{0}(x_{t}) + \eta_{ct} S_{0}(x_{c}, x_{t}) - \eta_{cc} S_{0}(x_{c}) \Big]$

- PDG'08 $\delta |V_{cb}|^4 \sim \delta B_k^{lat}$
- unquenched results for B_k
- N_f = 2
 - ETMC '08 twisted mass fermions (prelim.)
 - JLQCD '08 overlap fermions
- N_f = 2 + 1
 - HPQCD '06 staggered fermions
 - RBC/UKQCD '08 Domain Wall Fermions
- work in progress:
 - mixed action (DWF on stagg. sea) Aubin, Laiho, van de Water
 - staggered fermions: Lee et al

Kaon System - B_k Results

V. Lubicz, C. Tarantino, IFAE 2008 • scale dependence from quenched sim. • $B_{K}^{\overline{MS}}$ (2 GeV) = 0.55(.05) \hat{B}_{K} = 0.75(.07)

L. Lellouch, LATTICE 2008

- only dynamical $N_f = 2+1$ data used
- δ B_K ≈ 7%
- $\hat{B}_{K} = 0.725(.050)$

Kaon system - Experiment C.Bloise

- In recent years, the knowledge of CP-violation parameters in the Kaon sector has been improved by precision experiments
- Data are consistent with CPT symmetry and unitarity
- Present generation of experiments, KTeV, NA48 and KLOE have obtained precision results in disagreement with older data
- Present results are limited to the mixing and the directdecay phenomena
- To investigate CP-violation in the interference between mixing and direct-decay transition with Kaons, a challenging experimental program on the very rare K →πνν channel (and 2 generations of experiments) has to be pursued

Kaon system - Experiment

HQL08, Melbourne, June 08

$BR(K_L$	$\rightarrow \pi^+\pi^-$	(γ))	
----------	--------------------------	------	--

PDG 04			20.90±0.25
ктеv 04 DE negligible	+		19.75±0.12
DE included			19.63±0.21
DE included	-		19.69±0.19
19	20	21	l(x10 →) 22

M. Palutan -Flavianet, Capri Workshop, June '08

The Charm System

D⁰ Mixing, CP violation E. Golowich

SM Theory (Hadron Analysis)

 Estimate y_D ~10⁻² but hadronic physics messy; x_D problematic (wrong sign!).

• NP Theory:

• Many NP models can yield sizable x_D but a few cannot. Charm mixing data yield useful constraints. Could x_D have a NP component?

Theory -Things to Do:

- Sign of SM prediction for x_D .
- Relate charm mixing to charm rare decays.
- Keep working on CPV in charm.
- Respond to LHC findings!

D⁰ Mixing - Experiment J. Coleman

- After 30 years, evidence for D⁰ mixing is now compelling
- World averages of the mixing parameters exclude
 <u>"No D⁰ Mixing" at ~10</u>
- Evidence of D⁰ Mixing from several independent experiments
- Measured values of the mixing parameters $|x| \approx |y| \approx 1\%$

are compatible with Standard Model expectations

D⁰ CP violation - Experiment

- Many D⁰ decay modes searched at B-factories (Belle, BaBar) for CP violation.
- No evidence has been found.
- Most stringent constrains obtained from decays to CP eigenstates (K⁺K⁻, π⁺π⁻) and, using Dalitz analysis, from decays to charge conjugate states (K^{0s}π⁺π⁻, π⁺π⁻π⁰).
- Several CP asymmetries measured to ±0.25%
- Average of CPV parameters |q/p| and φ consistent with no CPV to ±15%

Belle, arXiv:0807.0148 (2008), 540 fb⁻¹

 $A_{CP}^{KK} = (-0.43 \pm 0.30 \pm 0.11)\%$ $A_{CP}^{\pi\pi} = (+0.43 \pm 0.52 \pm 0.12)\%$ consistent with no CPV

D⁰ Mixing, CP: Future Outlook

- B Factories plan to update + improve results
- CDF mixing partial dataset (x2 on tape, x4 next year)
- CDF CP violation: x40 data on tape
- manpower (not data) is becoming a problem

LHCb: impressive potential

LHCb	$10 {\rm fb}^{-1}$	8 >	< 10 ⁶	$y_{ m CP}\pm 0.05$ (s	tat)
BaBar	$384 {\rm fb}^{-1}$	7	0000	$1.03\pm0.33\pm$	0.19
Belle	$540{\rm fb}^{-1}$	11	1000	$1.31\pm0.32\pm$	0.25
	Data set	N(K ⁻ K	(π_s^{\pm})	<i>у</i> _{СР} (%)	
LHCb	10 fb ⁻¹	232500	X' ²	$^{2} \pm$ 0.064 (stat)	$y' \pm 0.87$ (stat)
CDF	$1.5{\rm fb}^{-1}$	12700	-0.12 ± 0.35		$\textbf{8.5} \pm \textbf{7.6}$
Belle	$400{\rm fb}^{-1}$	4024	0.18 ^{+0.21} -0.23		$0.6^{+4.0}_{-3.9}$
BaBar	$384 {\rm fb}^{-1}$	4030	-0.2	$\textbf{22}\pm\textbf{0.30}\pm\textbf{0.21}$	$9.7\pm4.4\pm3.1$
	Data set	N _{ws}		<i>x</i> ′′²(×10 ⁻³)	y′(×10 ^{−3})

P. Spradlin

The Beauty System

B Meson Lifetimes

OPE appears well convergent for b-quark

... but what's with the B_s lifetime?

F. Gabbiani, A. Onishchenko, A.A.P. Phys. Rev. D70, 094031 (2004)

$\Delta \Gamma_{\rm S} / \Gamma_{\rm S}$

Assuming no NP contributions to ΔM_s

$$\begin{split} \Delta \Gamma_s &= \left(\frac{\Delta \Gamma_s}{\Delta M_s}\right)^{\text{Theory}} \cdot \Delta M_s^{\text{Exp.}} = 0.088 \pm 0.017 \, \text{ps}^{-1} \\ \Rightarrow \quad \frac{\Delta \Gamma_s}{\Gamma_s} = \Delta \Gamma_s \cdot \tau_{B_d} = 0.127 \pm 0.024 \,. \end{split}$$

A. Lenz, U. Nierste, JHEP 06, 072 (2007)

Theoretical accuracy:

- corrections of O(α_s), 1/m_b and m_b² are known
- convenient change of operator basis avoids cancellations → better accuracy
- but it also shifts the central value (0.07 → 0.127) → large unknown $O(\alpha_s/m_b)$ effects

A. Petrov

Lifetimes and Δm - Tevatron D. Bauer

- CDF measures flavor specific lifetimes in trigger biased samples
- both detectors will update results

Lifetimes, Δm - in the Future P. Robbe • LHCb: in 2 fb⁻¹, 155 000 B_s \rightarrow D_s π decays

- simultaneous measurement of τ_s , Δm_s , $\Delta \Gamma_s$:
- Sensitivities (stat only):
 - $\sigma(\tau_s)$ =0.013 ps

■ $B_s \rightarrow J/\psi \phi$

- $\sigma(\Delta m_s)=0.008 \text{ ps}^{-1}$
- $\sigma(\Delta\Gamma_s)=0.03 \text{ ps}^{-1} \text{ (Input=0.068 ps}^{-1})$

	ATLAS	CMS	LHCb
$\sigma(\Delta\Gamma_s)$	0.021 ps ⁻¹	0.010 ps ⁻¹	0.008 ps ⁻¹
Input Value	0.1 ps⁻¹	0.142 ps ⁻¹	0.1 ps⁻¹

CP violation in charmonium

- results presented correspond to 465-657 x 10⁶ BB pairs
- $sin(2\beta)=sin(2\Phi_1)$ has been measured in B → Charmonium decays with great accuracy.
- Excellent agreement with Standard Model.
- Looking forward to high precision measurements from at LHCb, SuperB and KEKb upgrade!

E. Martin

$\Delta m(B^0)$, CP, CPT PDG2008 average $\Delta md = 0.507 \pm 0.005$ ps⁻¹

T. Higuchi

 statistical unc. on m comparable to systematic unc.

- Indirect CP violation measurements by Belle, BaBar, and DØ indicate the |q/p| is consistent to unity.
- CPT-violation with dilepton events by Belle and BaBar are reviewed. Belle will update the numbers with 535M BB pairs.

Leptonic D Decays

First disagreement between lattice and expt. New physics?

 D_s decay constant is the only result (of~ 15 quantities) that disagrees with experiment.

 Further tests this year confirm confidence in the lattice calculation → must take this seriously. Lattice tests continue.

$B \rightarrow D\tau v: q^2$ distribution S.Westhoff

$$\frac{d\Gamma(B \to D\tau\nu)}{dw} \propto |V_{cb}|^2 \left\{ (w^2 - 1) F_V(w)^2 \rho_V(w) + F_S(w)^2 \left[1 - g_s \frac{q^2/m_B^2}{1 - m_c/m_b} \right]^2 \rho_S(w) \right\}$$

[Grzadkowski, Hou '92] [Kiers, Soni '97]

 $w = \frac{E_D}{m_D} = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$

w=1 :

transversal W^+_{\perp} modes suppressed relative W^+_{\parallel} and H^+ contributions depend on q^2

 \rightarrow determine g_S from shape

Phase of the SM Bs mixing M. Ciuchini

The SM contribution to CP violation in Bs mixing is small and rather well determined:

 $sin 2\beta_s = 0.041 \pm 0.004 \text{ (arbitrary NP)} \\ = 0.037 \pm 0.002 \text{ (SM or MFV)}$

- The phase of the B_s mixing amplitude can be extracted from $B_s \rightarrow J/\psi \phi$ with a small theoretical uncertainty
- Hence observing a mixing phase significantly larger than 0.041 would be a very clean signal of NP in B_s mixing

\$\overline{\overl

 CDF partial update - new result consistent with SM at 7% - no combination available yet φ_s - Global Fits

M. Ciuchini

C_{B,}

Including the reanalysis of the DØ data

 $^{(*)}\phi_{Bs} < 0:$ 3\sigma -> 2.5\sigma

New CDF data <u>not</u> included: new CDF likelihood "not ready yet"

SM compatibility decreased in the CDF analysis

If this evidence is confirmed...

 MFV models are ruled out, including the simplest realizations of the MSSM

ϕ_s - Discussion

cca 10 people

- Multifaceted issue of global fits vs published values
- Frequentist vs Bayesian approach
 - Experiments report frequentist CL regions
 - UTFit procedure reports Bayesian probability integral
- a) these tend to disagree in tail situations
- b) the published likelihood can not be used to reproduce the published values artificial performance boost
- suggestion: check for J/ψ f₀ contamination/interference
- suggestion: do not add strong phase constraints to fit

ϕ_s - Future Outlook

G. Lanfranchi

- CDF, D0 will keep taking data
- for large β_s, good chances of observation
- detector power is very close will benefit from combination

 LHCb - unprecedented precision imminent with 2009 data

				010101010101010101010101010101 01010101	
	ATLAS	CMS	LHCb	CDF *)	D0 *)
L[fb ⁻¹]	2.5	2.5	0.5	1.3	2.8
Yield [untagged]	~23k	~27k	~33k	~ 2k	~2k
2βs sensitivity	0.16 ⁺⁾	not yet done	0.06+)	[0.32,2.82]@68%CL	0.57 ^{+0.24} -0.30
$\sigma(\Delta\Gamma s/\Gamma s)/(\Delta\Gamma s/\Gamma s)$	0.45	0.28	0.17	0.75	0.50
[for ΔΓs/Γs~0.1]				*) published results	*) published results

⁺⁾ assuming SM value

Writeup Status

- Writeup Authors' Meeting: Friday Lunch Break
- WGIV contribution distributed throughout book
- presenters had very little overlap in material
- we ask our presenters to write up 1-2 pages summarizing their talk ASAP
- already received 6 short contributions (6/19)
- information will be edited and incorporated into book writeup
- as needed, conveners will follow up with presenters
- once material is placed into book, review/discuss

Conclusions

- successful information exchange suggestions, concerns
- speakers are hands-on experts on presented topics
- topics chosen to have little overlap
- nearly unit mapping speaker \leftrightarrow writeup author
- first work toward draft writeup started
- Iooking forward to contributing to book