WGII – experimental aspects

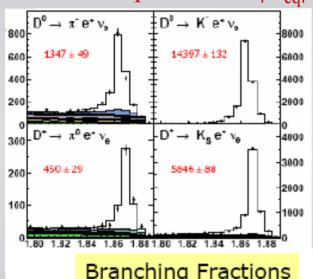
Highlights and future priorities

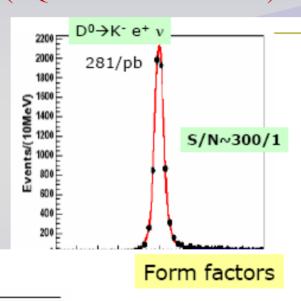
Bob Kowalewski, U. of Victoria

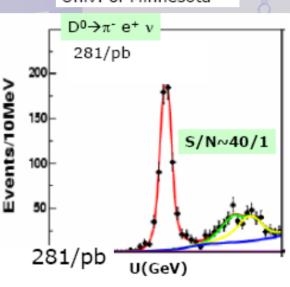
...on behalf of WGII conveners and participants

Highlights

- Selected based on freshness and importance
- Charm semileptonic decays
- $|V_{cb}|$ exclusive: $B \rightarrow D^{(*)} \ell \nu$, HQET form factors
- |V_{cb}| inclusive: moments, OPE, global fit
- $|V_{ub}|$ exclusive: $B \rightarrow \pi \ell \nu$, heavy-light form factors
- $|V_{ub}|$ inclusive: $B \rightarrow u \ell v$, OPE, resummation...


Semileptonic charm


• New measurements improve $f^+(0)|V_{co}|$

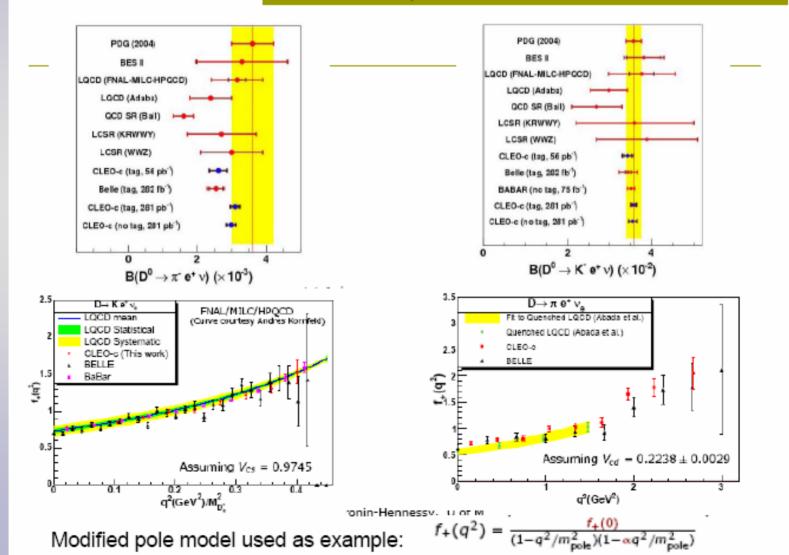

• 1-4% exp. error on $|V_{cq}|$ (LQCD error ~10% now)

Charm Semileptonic Decays

Dan Cronin-Hennessy Univ. of Minnesota

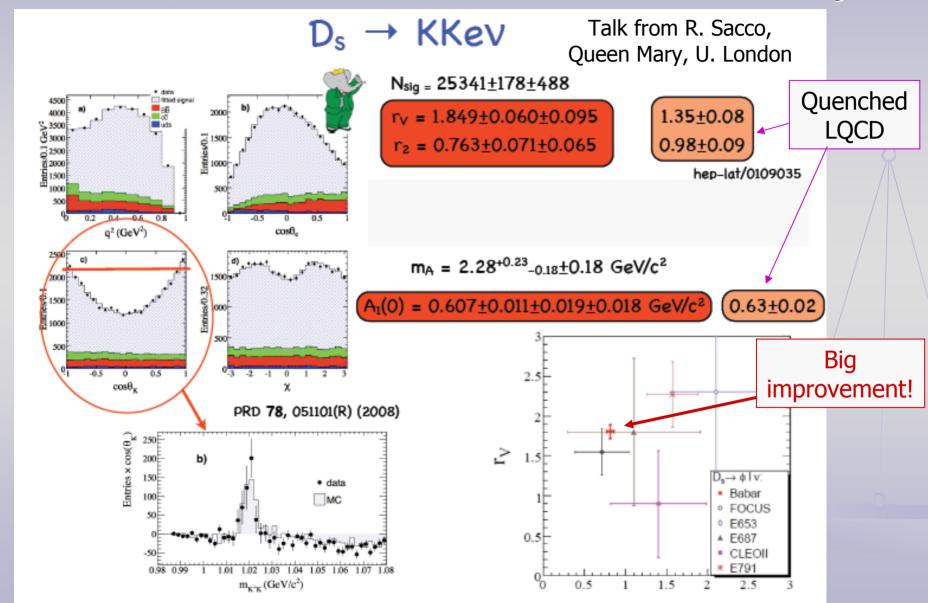
Branching Fractions

	CLEO-c (tag)	CLEO-c (no-tag)	Average
$\pi^- e^+ \nu_e$	0.308(13)(4)	0.299(11)(8)	0.304(11)(5)
$\pi^0 e^+ \nu_e$	0.379(27)(23)	0.373(22)(13)	0.378(20)(12)
$K^-e^+\nu_e$	3.60(5)(5)	3.56(3)(9)	3.60(3)(6)
$\bar{K}^0 e^+ \nu_e$	8.87(17)(21)	8.53(13)(23)	8.69(12)(19)


K:
$$f^+(0)V_{cs} = 0.744(7)(5)$$

 π : $f^+(0)V_{cd} = 0.143(5)(2)$

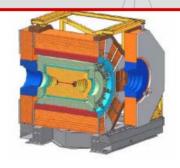
 $V_{cd} = 0.223 \pm 0.008 \pm 0.003 \pm 0.023$ $V_{cs} = 1.019 \pm 0.010 \pm 0.007 \pm 0.106$


Nice summary from D. Cronin-Hennessy

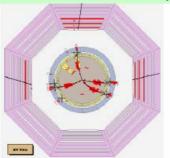
Summary Plots

The next level of precision has been reached with the analyses from BaBar, Belle and CLEO-c

New precision charm form factors: D_s


Future prospects in semileptonic charm

 More data to analyze in CLEO, B factories


□ Future Improvements:

- BaBar, Belle and CLEO-c all have unanalyzed data. Unanalyzed data data varies from 9/10 to 2/3.
- BaBar and CLEO-c analyses will gain more quickly since their approaches have larger relative statistical uncertainty.
- Pion modes are statistics limited and will benefit greatly from the upcoming work. I would expect a measurement from BaBar for the D⁰ → D⁰ → π e v soon.
- The largest uncertainties of V_{cg} arise from theory.
 - With expected improvements from theory V_{cd} from semileptonic decay may may surpass V_{cd} from vN.

- New facility to exploit!
- BESIII has started data accumulation.
- \Box Current running is at ψ' .
- Detector capabilities similar to CLEO-c.
- Early major start problems are solved.
- Luminosity at this early date is ~CESR-c.
- Expect 10 times CLEO-c at 3770 luminosity with one year of running.

First hadronic event: July

D. Cronin-Hennessy, U of M

ia

$|V_{cb}|$ from $B \rightarrow X_c \ell \nu$

- Old story: use HQET parameterization, fit slope, FF ratios and |V_{cb}|*FF(w=1)
- FF(1) from LQCD or LCSR

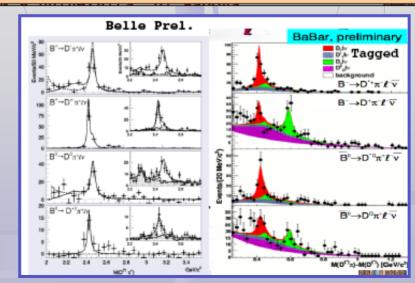
■ NEW: improved precision on $B \rightarrow D^{**} \ell \nu$ and $B \rightarrow D^{(*)} \pi \ell \nu$ decays... but no time to discuss

Belle: arXiv:0711.3252 BaBar: arXiv:0808.0528

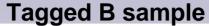
BaBar: arXiv:0808.0333

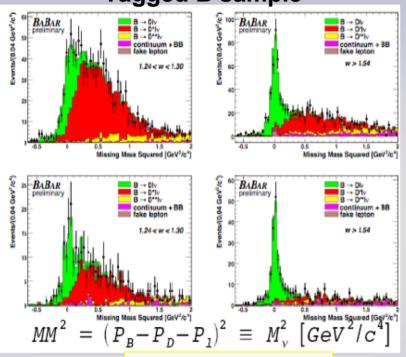
```
G(1)=1.074 \pm 0.018 \pm 0.016

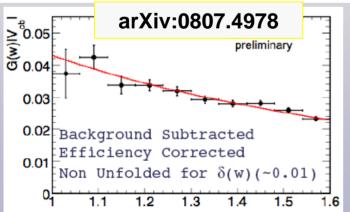
(M.Okamoto et al NPPS 140, 461 (2005))

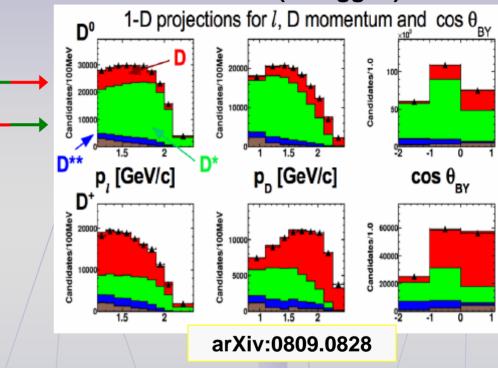

h_{A}(1)=0.921 \pm 0.013 \pm 0.020

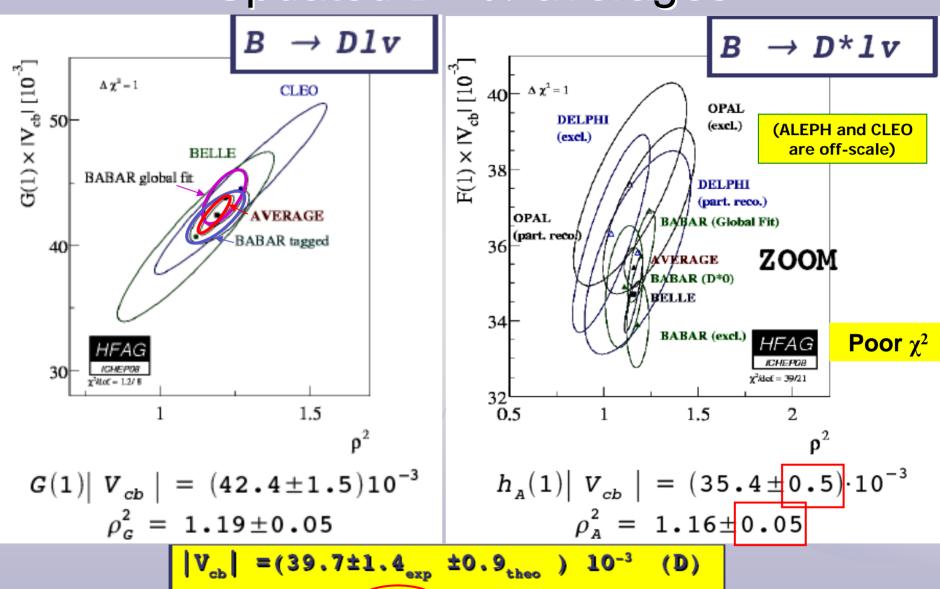
(J.Laiho et al arXiv:0808.251 [hep-lat]
```


```
|V_{cb}|*F.F.(W\rightarrow 1)


\rho_{D}^{2}, \rho_{D*}^{2} ( slopes of ff )


R_{1}, R_{2}: form factor ratios (D*)
```



Big improvement in $B \rightarrow D\ell v$



Global fit (untagged)

- New tagged and untagged preliminary measurements of Dℓv from BaBar
- Complementary methods; largely independent (also for D*ℓv)

Updated D^(*)ℓv averages

10-3

 $V_{cb} = (38.1 \pm 0.6_{exp}) \pm 0.9_{theo}$

2008/09/12

Still some puzzles

(3) New results from both D*0 and D*+ will increase the BR deficit

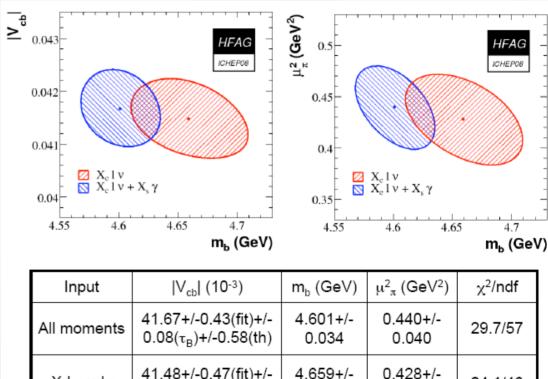
Decay Mode	Branching Frac	G 2008 Decay Mode	Branching Fraction
$B^- \rightarrow \ell^- \bar{\nu}_\ell + \text{anything}$	$10.99 \pm 0.28 \%$	$\bar{B}^0 \to \ell^- \bar{\nu}_\ell + \text{anythin}$	ng 10.33 ± 0.28 %
$B^- \rightarrow D^0 \ell^- \bar{\nu}_{\ell}$	$2.27 \pm 0.11 \%$	$\bar{B}^0 \rightarrow D^+ \ell^- \bar{\nu}_{\ell}$	$2.17 \pm 0.12 \%$
$B^- \rightarrow D^{*0} \ell^- \bar{\nu}_{\ell}$	$6.07 \pm 0.29 \%$	$\bar{B}^0 \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell}$	$5.16 \pm 0.11 \%$
$B^- \rightarrow D^+ \pi^- \ell^- \bar{\nu}_{\ell}$	$0.42 \pm 0.05 \%$	$\bar{B}^0 \rightarrow D^0 \pi^+ \ell^- \bar{\nu}_{\ell}$	$0.43 \pm 0.06 \%$
$B^- \rightarrow D^* \pi^- \ell^- \bar{\nu}_{\ell}$	$0.61 \pm 0.05 \%$	$\bar{B}^0 \rightarrow D^{*0}\pi^+\ell^-\bar{\nu}_\ell$	$0.49 \pm 0.08 \%$
$B^- \rightarrow D^{(*)} n \pi \ell^- \bar{\nu}_{\ell}$	~ ??	$\bar{B}^0 \rightarrow D^{(*)} n \pi \ell^- \bar{\nu}_{\ell}$	≃ ??
$B^- \rightarrow D^{(*)0}(\pi)\ell^-\bar{\nu}_\ell$	$9.9 \pm 0.3 \%$	$\bar{B}^0 \rightarrow D^{(*)}(\pi)\ell^-\bar{\nu}_{\ell}$	$8.7 \pm 0.2 \%$

 $B(D^{*0}lv) = (5.4\pm0.2)$ %
BABAR prel.(not included)

 $B(D^{*+}lv) = (4.4\pm0.3)$ % Belle prel.(not included)

A problem in "traditional" B-fact. measurements of Br(B⁰ → D*+ lv) ?

BABAR PRD77,32002,08	4.7±0.4
Belle ICHEP 08	4.4±0.3
PDG 2008	5.2±0.1
Rescaled B+ PDG2008	5.7±0.1
Rescaled B+ BABAR	5.2±0.4
PRL100, 231803 (2008)	

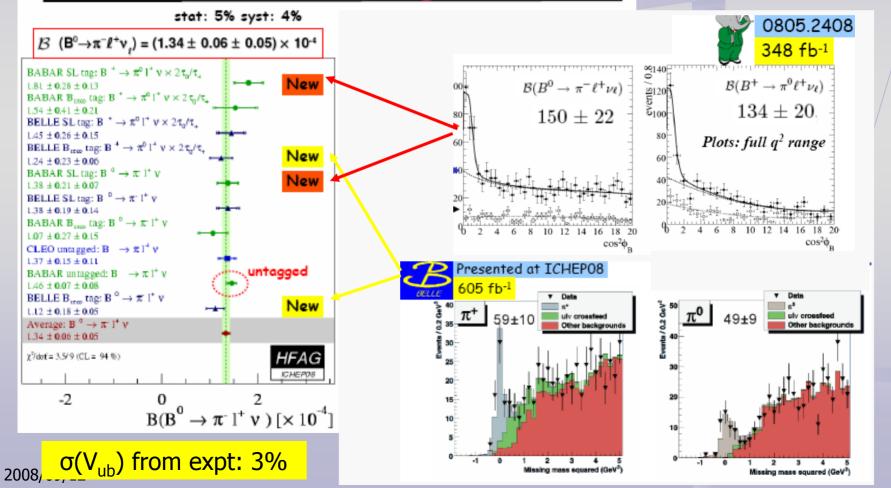

Emphasizes importance of the D $\ell \nu$ measurements

|V_{cb}| from global fit to moments

- Calculate and measure moments of E_e and M_x^2 spectra in $b \rightarrow c \ell v$ decays and E_{γ} in $b \rightarrow s \gamma$ decays
- Use ~60 moments, fit for 7 parameters
- Should b \rightarrow s γ be included? Maybe, but quantifying theory uncertainty requires more work

Input	V _{cb} (10 ⁻³)	m _b (GeV)	$\mu^2_{\ \pi} (\text{GeV}^2)$	χ^2 /ndf
All moments	41.67+/-0.43(fit)+/- 0.08(τ _B)+/-0.58(th)	4.601+/- 0.034	0.440+/- 0.040	29.7/57
X _c lv only	41.48+/-0.47(fit)+/- 0.08(τ _B)+/-0.58(th)	4.659+/- 0.049	0.428+/- 0.044	24.1/46 18

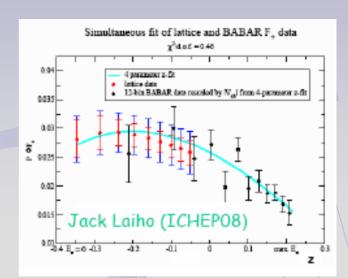
Recent progress, outlook

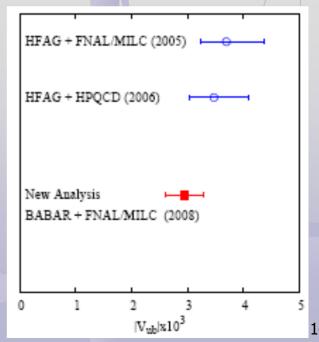

- Renewed attention on theoretical correlation matrix.
 - Under study; first look suggests this might be the source of anomalously low χ^2/d .f. (~30/60)
 - \sim no impact on m_b, but lowers $|V_{cb}|$ by ~ 1 sigma
- New moment measurements from Belle ($b \rightarrow s\gamma$) and BaBar (M_X moments in $b \rightarrow c\ell \nu$)
- Interest in including threshold determinations of m_b and/or m_c, once the errors on these are agreed upon
- |V_{cb}| from inclusive/exclusive are converging

Exclusive |V_{ub}|

Main interest: $B \rightarrow \pi \ell \nu$

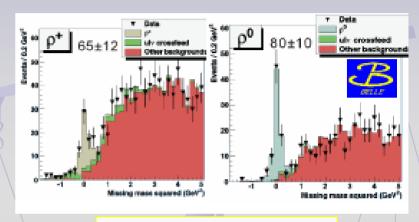
Jochen Dingfelder (University of Freiburg)


$B \to \pi \ell \nu$ total branching fraction



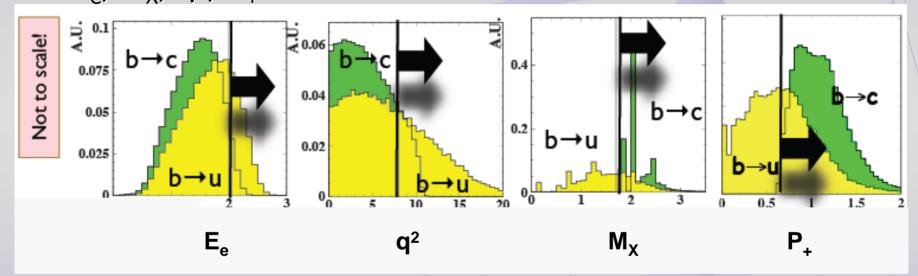
Determination of |V_{ub}|

- Most accurate BF(B→πℓν) and best q² spectrum still come from untagged BaBar measurement
- Fits to $\Delta BF(q^2)$ and lattice points can be used to constrain FF shape, extract $|V_{ub}|$
- New preliminary FNAL/MILC calculation of f₊(q²) gives much lower |V_{ub}|; if confirmed this would re-introduce a tension with the inclusive |V_{ub}| determination


 $2.94 \pm 0.35 \times 10^{-3}$ (Preliminary) (Van de Water at LAT08)

Prospects for improvement in exclusive $B \rightarrow X_{II} \ell \nu$

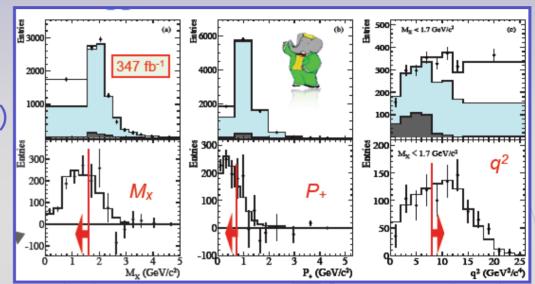
 Measure other hadronic final states to better quantify πℓν backgrounds at large q²

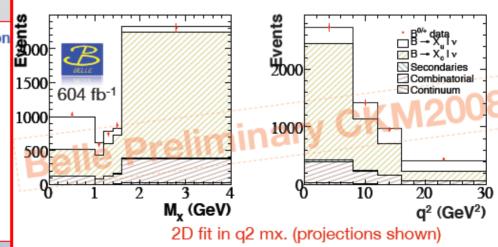

 Many current analyses do not use the full available statistics Belle, ICHEP08

Extrapolations o	f B ⁰	$\rightarrow \pi^+ \ell \nu$ measurements:	Today →	1ab-1
------------------	------------------	--	---------	-------

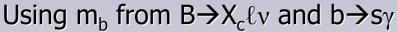
	N _{signal}	σ _{BF,stat} (%)	σ _{BF,syst} (%)	σ _{BF,exp} (%)	σ _{Vub, εxp} (%)
Had. tag	59 → 100	16 → 12	4 → 3	17 → 12	9 → 6
SI. tag	150→ 430	1 5 → 9	5 → 4	16 → <mark>10</mark>	8 → 5
Untagged	5k → 25k	5 → 2	$5 \rightarrow 5$	7 → <mark>5</mark>	3.5 → 2.5

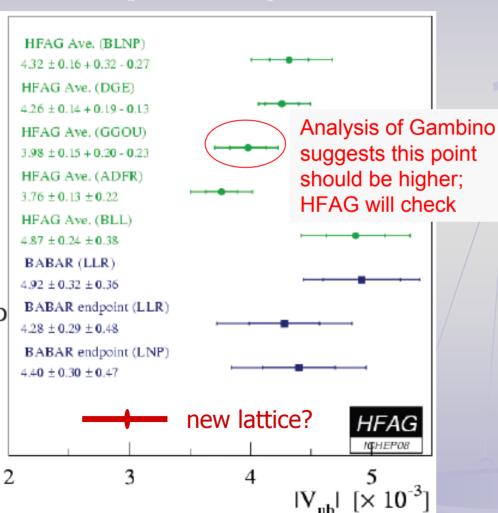
Inclusive b → u ℓv

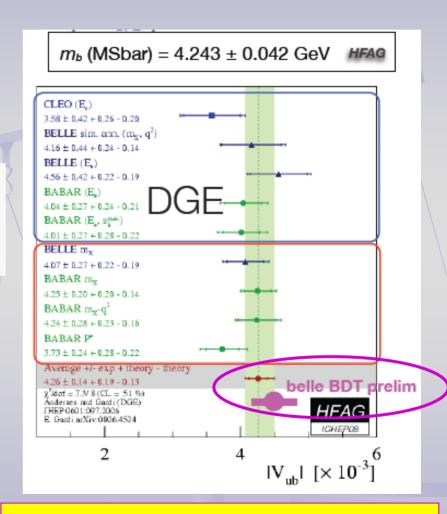

 Experimental measurements of partial rates in regions of E_e, M_x, q², P₊...



- Recall b→u rate ~ 2% of b→c rate
- New measurements...


$|V_{ub}|$ from inclusive b $\rightarrow u \ell v$


- New at ICHEP08: BaBar recoil analysis $\sigma_{Vub} \sim 8.5\%$ (theory+ $m_b \sim 7\%$)
- New at CKM08: Belle multivariate (BDT) analysis, measures ~full b→uℓν rate:
 σ_{Vub}~ 7% (theory+m_b ~4%)
- 3. BDT cut with many input par's: M_{miss}², dZ, dr, Q_{total}, Qlepton Nlepton, Q(B), D* partial reco etc.....
- 4. Combinatorial estimated from MC, normalisation from sideband region. (same approach as Vcb moments analyses)
- 5. 2D fit to M_x , q^2 with backgrounds and signal floated to determine background yield.
- 6. Measure absolute rate.



|V_{ub}| from inclusive decays

With latest measurement, inclusive $|V_{ub}|$ does not go down...

Priorities (excl. theory), outlook

- Sort out $B \rightarrow D^* \ell \nu$ measurements; ΣBF puzzle
- Further improve $B \rightarrow D\ell\nu$ (need Belle results)
- Further improve $B \rightarrow \pi \ell \nu$ at high q^2
- Incorporate latest theoretical advances into global fit to b→cℓv and b→sγ moments
- Further improve full $b \rightarrow u \ell v$ rate (need BaBar results)
- Lots to do, manpower is decreasing ⊗
- |V_{ub}| inclusive/exclusive "tension" becoming significant