Summary WG 2 - Theory

Matthias Neubert Johannes Gutenberg University Mainz 13.9.08

Presentations

- Nils Offen: Form factor determinations from light-cone sum rules
- Junko Shigemitsu: B→π semileptonic decays Status report from lattice QCD
- Thomas Becher: $B \rightarrow X_c Iv$ theory Status and prospects
- Jack Laiho: Determination of F(1) and G(1)
- Nazario Tantalo: Future prospects for LQCD form factor calculations
- Einan Gardi: Theoretical review B→X_sγ spectrum and moments
- Paolo Gambino: Status and prospects of inclusibe $b \rightarrow u l v$ theory
- Vicent Mateu: Charm and bottom mass determination from sum rules

Fit Results in the Kinetic Scheme

Input	V _{cb} (10 ⁻³)	m _b ^{kin} (GeV)	mu ² _{pi} (GeV ²)		chi ² /ndf.
all moments (X_c lnu and X_s gamma)	41.67 +/- 0.43(fit) +/- 0.08(tau _B) +/- 0.58(th)	4.601 +/- 0.034	0.440 +/- 0.040	<u>details</u>	29.7 / (64-7)
X _c lnu only	41.48 +/- 0.47(fit) +/- 0.08(tau _B) +/- 0.58(th)	4.659 +/- 0.049	0.428 +/- 0.044	<u>details</u>	24.1 / (53-7)

- OPE predictions for $B \rightarrow X_c Iv$ moments now available (soon ...) including $O(\alpha_s^2)$ and $O(\alpha_s/m_b^2)$ corrections, and parametrization of $O(1/m_b^4)$ effects [Becher]
- Expected to remove important theoretical limitations, could potentially shift $|V_{cb}|$ and $m_{b,c}$ values [Schwanda]

- Issues: [Becher, Gardi]
 - quark-hadron duality (X_c=D,D^{*} for ~80% of events → hadronic mass moments?)
 - use of B→X_sγ moments introduces uncontrolled systematics due to shape function (E₀=1.8-2.0 GeV) and non-OPE contributions
 [Lee, MN, Paz (in prep.)]

- Use of B→X_sγ moments driven by desire to break m_{b,c} degeneracy and lower m_b to "reasonable" values
- Perhaps better to use independent determinations of m_{b,c} instead

- Heavy-quark masses extracted from e⁺e⁻ sum rules promising (many-loop results exist)
- Preliminary results (using contour-improved perturbation theory):

$$m_c = 1.283 \pm 0.040_{exp} \pm 0.016_{\mu} \pm 0.014_{method} \pm 0.001_n$$

 $m_b = 4.153 \pm 0.003_{\mu} \pm 0.009_{method} \pm 0.016_n$ [Matteu]

- very competitive errors
- more conservative than previous analysis by Kühn et al. (?)

- Much recent progress in theory: [Gambino]
 - O($\beta_0 \alpha_s^2$) corrections to spectra calculated
 - $-O(\alpha_s^2)$ corrections in shape-function region calculated [Asatryan, Greub, MN, Pecjak (in prep.)]
 - Flexible parametrization of shape functions investigated

[Ligeti et al.]

 Detailed comparisons of different methods being performed

 Detailed comparisons of different methods being performed [Gambino]

- Overall quite good consistency
- Some issues remain (weak annihilation!)
- Not all approaches of equal rigor (inclusion of subleading shape functions, consistency with OPE, systematic error estimates, ...)
- When stakes are high (|V_{ub}|), only systematic approaches (BLNP, GGOU, DGE) should be used

 More inclusive measurements (less restrictive cuts) reduce theory uncertainties and m_b dependence

Recent Belle measurement of uncut B→X_uIv rate (only requires E_I >1 GeV) goes a long way and validates large |V_{ub}| values!

Belle Multivariate analysis (NEW @ CKM2008) 2/2

~ same for BLNP [Urquijo]

- Lattice QCD predicts B→π form factor
- Recent improvements in analysis method (chiral and continuum extrapolations, simultaneous fits to lattice and experiment (+LCSR))
- Significant statistical and fitting errors remain
- Unquenched results based on staggered fermions, results using other actions needed for validation

- Light-cone sum rules provide alternative to lattice QCD, but method is "inherently approximate"
- No systematic error analysis (10% ?)

comparison of exclusive determinations					
Method	$ V_{ub} imes 10^{-3}$	Ref.			
Lattice-QCD	$3.78 \pm 0.25 \pm 0.52$	Fermilab/MILC '05			
Lattice-QCD	$3.55 \pm 0.25 \pm 0.50$	HPQCD '07			
Omnes-FF	$3.47 \pm 0.29 \pm 0.03$	Flynn, Nieves '07			
BCL-FF	$3.36 \pm 0.23 \pm 0.01$	Bourrely et al. 08			
LCSR	$3.5\pm0.4\pm0.1$	Ball '06			
LCSR	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$	Duplančić et al. 08			

[Offen]

The $|V_{ub}|$ Crisis $|V_{ub}|_{incl} \sim (4.0 - 4.5) \cdot 10^{-3}$ $|V_{ub}|_{excl} \sim (3.0 - 3.5) \cdot 10^{-3}$

may stay with us for a long time ...

Inclusive $|V_{cb}|$

- $|V_{cb}|$ is output of global moment fit
- Present value might be reduced when theoretical improvements (higher-order corrections) will have been included

	V _{cb} (10 ⁻³)	m _b (GeV)	$\mu^2_{~\pi}~(\text{GeV}^2)$	χ^2 /ndf
default	41.67+/-0.43(fit)+/- 0.08(τ _B)+/-0.58(th)	4.601+/- 0.034	0.440+/- 0.040	29.7/57
new	40.85+/-0.68(fit)+/- 0.08(τ _B)+/-0.57(th)	4.605+/- 0.031	0.312+/- 0.060	54.2/57

(rough estimate of "theory correlations")

[Schwanda]

Exclusive |V_{cb}|

- Lattice QCD results in good shape [Laiho]
- New results based on B→Dlv BaBar analysis encouraging de Divitiis, et al. arXiv:0707.0582

Exclusive |V_{cb}|

• New unquenched result for $B \rightarrow D^* I_V$:

 $h_{A_1}(1) = 0.921(13)(20)$ Fermilab/MILC $|V_{cb}| = (38.7 \pm 0.9_{exp} \pm 1.0_{theo}) \times 10^{-3}$ [Laiho]

 Somewhat larger value obtained from B→Dlv

The |V_{cb}| Situation

Prospects for a consistent value of $|V_{cb}|$ from both inclusive and exclusive methods

(if we're lucky ...)