

Prospects for γ at SuperB Flavor Factory (SSF)

Rome, Sept. 9-13

F. Martínez-Vidal Universitat de València-CSIC

γ @ SuperB Flavor Factory?

- All measurements of observables sensitive to γ at current B Factories are statistically limited (~500M BB pairs × 2) $\gamma = (67^{+32}_{-25})^{\circ}$
 - As of ICHEP'08 (CKMFitter Group, WA):
 - Although not all the statistics yet analyzed by BaBar/Belle

- A measurement of $\gamma @ 1^\circ$ level combined with a determination of $|V_{ub}| @ 2\%$, is crucial for a precise model-independent determination of the CKM matrix
 - $|V_{ub}| @2\%$ level is a benchmark goal for the SSF Physics Case (can only be done at an e⁺e⁻ machine), and significant amount of work has been done
 - So far, γ considered less critical for Physics Case and little work has been done
 - LHCb (10 fb⁻¹) will certainly make a significant step forward in precision (2-3°?)
- Goal at SuperB is to reach 1° or better precision...

Assumptions and strategy

- SuperB has an initial peak luminosity of 10^{36} cm⁻²s⁻¹ on the Y(4S)
 - Can integrate 15 ab⁻¹ in a Snowmass Year of 10⁷ s
 - Data taking starts ~2015 + 5 years of operation \Rightarrow 75 ab⁻¹ on the Y(4S) by ~2020
- SuperB can operate at different energies
 - L_{peak} scales with s \Rightarrow $L_{\text{peak}} \sim 10^{35} \text{ cm}^{-2} \text{s}^{-1} @ \psi''(3770)$
 - 5% of running time @ $\psi''(3770) \Rightarrow 3$ moths over 5 years
- Beam energies 7 GeV e⁻ on 4 GeV e⁺
- SuperB will be able to work with 80% polarized electron beam (not relevant for γ)

- Extrapolate current BaBar analyses on charged $B \rightarrow D^{(*)0}K^{(*)}$ decays, assuming the same detector performance (conservative), and combine ~correctly
- Make considerations on how to improve systematic uncertainties and/or reduce model dependence (running at $D\overline{D}$ threshold and model independent approach)

$B^+ \rightarrow D^{(*)}K^{(*)+}$ Dalitz method

- Neutral D reconstructed in 3-body self-conjugate final state ($K_{s}\pi^{+}\pi^{-}, K_{s}K^{+}K^{-}, \pi^{0}\pi^{+}\pi^{-}$)
- Extract γ from fit to Dalitz-plot distribution of D⁰ daughters

$$\left|\Gamma_{\pm}(m_{-}^{2},m_{+}^{2}) \propto |A_{D\pm}|^{2} + r_{B}^{2} |A_{D\mp}|^{2} + 2\lambda \left\{x_{\pm} \operatorname{Re}[A_{D\pm}A_{D\mp}^{*}] + y_{\pm} \operatorname{Im}[A_{D\pm}A_{D\mp}^{*}]\right\}$$

$$\begin{split} & \underset{A_{D\mp}=}{\overset{m_{\pm}}{=}} m(\mathsf{Ksh}^{\pm}) \\ & \mathsf{A}_{D\mp}=D^{0}/\bar{D}^{0} {\rightarrow} K^{0}_{S}h^{+}h^{-} \text{ decay amplitudes} \\ & \lambda=+1 \text{ for } B {\rightarrow} D^{0}\mathsf{K}, \ D^{*0}[D^{0}\pi^{0}]\mathsf{K}, \ D^{0}\mathsf{K}^{*} \\ & -1 \text{ for } B {\rightarrow} D^{*0}[D^{0}\gamma]\mathsf{K} \end{split}$$

 λ accounts for different parity of $D^{*0} \rightarrow D^0 \gamma$ wrt $D^0 \pi^0$

- 2-fold γ ambiguity: $(\delta_B, \gamma) \rightarrow (\delta_B + \pi, \gamma + \pi)$
- As interference depends on Dalitz position requires modelization of $A_{D+}(m_{-}^{2},m_{+}^{2})$

Extract D^0/\overline{D}^0 decay amplitudes from DP analysis of high-statistics $c\bar{c}$ sample with flavor-tagged D^0 decays from $D^{*+} \rightarrow D^0 \pi^+$

Cartesian CP parameters

$D^0 \rightarrow K_S \pi^+ \pi^-$ BaBar Model

- 10 BW resonances (isobar) for P (dominant) and D waves
- K-matrix for $\pi\pi$ and K π (LASS) S-waves

CKM 2008, 9-13 September, 2008

PRD78, 034023 (2008)

351 fb⁻¹

D⁰→K_SK⁺K⁻ BaBar Model

• Isobar model, dominated by S-wave $K_{S}a_{0}(980)$, with significant contribution from $K_{S}a_{0}(1450)$, and P-wave $K_{S}\phi(1020)$

PRD78, 034023 (2008)

351 fb⁻¹

$B^+ \rightarrow D^{(*)}K^{(*)+}$ BaBar Dalitz systematic errors

Experimental systematic error

Source	<i>x</i> _	<i>y</i> _	x_+	<i>y</i> ₊	x_{-}^{*}	<i>y</i> [*] _	x_+^*	y_{+}^{*}	x_{s-}	y_{s-}	x_{s+}	y_{s+}
$m_{\rm ES}, \Delta E, \mathcal{F}$ shapes	0.001	0.001	0.001	0.002	0.002	0.004	0.004	0.005	0.003	0.002	0.001	0.004
Real D^0 fractions	0.001	0.001	0.001	0.001	0.001	0.001	0.004	0.001	0.002	0.004	0.001	0.001
Charge-flavor correlation	0.002	0.002	0.001	0.001	0.002	0.002	0.002	0.001	0.001	0.002	0.001	0.001
Efficiency in the Dalitz plot	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.002	0.003	0.001	0.005
Background Dalitz plot shape	0.012	0.007	0.013	0.003	0.010	0.007	0.007	0.007	0.014	0.006	0.012	0.005
$B^- \rightarrow D^{*0} K^-$ cross feed		• • •			0.003	0.002	0.007	0.001	•••	•••	•••	
CP violation in $D\pi$ and $B\overline{B}$ bkg	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.004	0.006	0.002	0.003	0.001
Non- $K^* B^- \rightarrow \tilde{D}^0 K_S^0 \pi^-$ decays									0.035	0.058	0.025	0.045
Total experimental	0.015	0.007	0.014	0.006	0.014	0.009	0.014	0.010	0.039	0.058	0.028	0.051

Estimated irreducible experimental systematic error: 0.003

Dalitz model systematic error

Source	<i>x</i> _	у_	x_+	<i>y</i> +	x_{-}^{*}	<i>y</i> *_	x_+^*	y_{+}^{*}	x_{s-}	y_{s-}	x_{s+}	y_{s+}
Mass and width of Breit-Wigner's	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.003	0.003	0.001	0.002	0.002
$\pi\pi$ S-wave K-matrix solutions	0.003	0.012	0.003	0.001	0.003	0.007	0.002	0.009	0.001	0.001	0.013	0.003
$K\pi$ S-wave parametrization	0.001	0.001	0.002	0.004	0.001	0.003	0.001	0.003	0.005	0.001	0.004	0.002
Angular dependence	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.003	0.001	0.003	0.001
Blatt-Weisskopf radius	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.003
Add/remove resonances	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.001	0.001	0.002
Dalitz plot efficiency	0.006	0.004	0.008	0.001	0.002	0.004	0.002	0.003	0.008	0.001	0.008	0.004
Background Dalitz plot shape	0.003	0.002	0.004	0.001	0.001	0.001	0.001	0.001	0.004	0.001	0.004	0.002
Normalization and binning	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.001	0.003	0.001
Mistag rate	0.008	0.006	0.006	0.005	0.002	0.001	0.002	0.003	0.008	0.010	0.004	0.007
Dalitz plot complex amplitudes	0.002	0.002	0.003	0.004	0.001	0.001	0.002	0.006	0.003	0.003	0.004	0.002
Total Dalitz model	0.011	0.015	0.011	0.008	0.004	0.010	0.005	0.012	0.014	0.011	0.018	0.010

Estimated irreducible Dalitz model systematic error: 0.006

~Irreducible

F. Martínez-Vidal, Prospects for y at SFF

$B^+ \rightarrow D^{(*)}K^{(*)+} GLW$ method

- Neutral D reconstructed in CP-eigenstate final state (CP-even: $K^+K^-, \pi^+\pi^-$ and CP-odd: $K_S\pi^0, K_S\omega, K_S\phi$) and Cabibbo-favored $K\pi$ final state
- Use measured B^{\pm} yields to determine GLW observables

$$R_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)}{[\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to \overline{D}^0K^+)]/2} = 1 \pm 2r_B \cos\gamma\cos\delta_B + r_B^2$$

$$A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)} = \frac{\pm 2r_B \sin \delta_B \sin \gamma}{R_{CP\pm}}$$

$$A_{CP+}R_{CP+} = -A_{CP-}R_{CP-}$$

• Extract $x \pm$ for combination with Dalitz method

$$x_{\pm} = \frac{R_{CP+}(1 \mp A_{CP+}) - R_{CP-}(1 \mp A_{CP-})}{4}$$
$$r_{B}^{2} = x_{\pm}^{2} + y_{\pm}^{2} = \frac{R_{CP+} + R_{CP-} - 2}{2}$$

• 8-fold γ ambiguity

Constraints on (x,y) plane

B⁺→D^(*)K^{(*)+} BaBar GLW results

$B^{\pm} \rightarrow DK^{\pm}$	PRD77,	111102(R) (2008)	arXiv:0807.2408 hep/ex	PRELIMINARY
		$B^+ \rightarrow DK^+$	$B^+ \longrightarrow D^* K^+$	$B^+ \rightarrow D^0 K^{*+}$
$B^{\circ} \rightarrow D^{\circ} K^{\circ}$	A _{CP} + (0.27±0.09±0.04	0.11±0.09±0.01	0.09±0.13±0.05
	А _{СР} -	-0.09±0.09±0.02	2 0.06±0.10±0.02	-0.23±0.21±0.07
80	R_{CP} +	1.06±0.10±0.05	5 1.31±0.13±0.04	2.17±0.35±0.09
$\begin{array}{ccc} 60 & B^+ \\ & & B^+ \rightarrow D^0 K^+ \\ & & CP \text{ even} \end{array}$	<i>R</i> _{<i>CP</i>} -	1.03±0.10±0.05	5 1.10±0.12±0.04	1.03±0.27±0.13
	<i>x</i> ₊	-0.09±0.05±0.02	2 -0.09±0.07±0.02	0.18±0.14±0.05
	<i>x</i> _	0.10±0.05±0.03	-0.02±0.06±0.02	0.38±0.14±0.05
2.8 σ evidence for CPV	r_B^2	0.05±0.07±0.03	3 0.22±0.09±0.03	_
B	x ₊ comp	etitive with Dalitz		

 $B^{\pm} \rightarrow DK^{\pm}$

Source	ΔR_{CP+}	ΔR_{CP-}	ΔA_{CP+}	ΔA_{CP-}
Fixed fit parameters	0.036	0.019	0.010	0.002
Peaking background	0.029	0.037	0.031	0.003
Detector charge asym.			0.022	0.022
Opp. CP bkg. in $K_S^0 \omega$		0.002		0.007
$R_{CP\pm}$ vs R_{\pm}/R	0.026	0.025		
K/π efficiency	0.002	0.007		
Total	0.053	0.049	0.039	0.023

Estimated irreducible experimental systematic error on $R_{CP\pm}$, $A_{CP\pm}$: 0.01

CKM 2008, 9-13 September, 2008

F. Martínez-Vidal, Prospects for y at SFF

11

• Neutral D reconstructed in $K^+\pi^-$ ($K^+\pi^-\pi^0$ and $K^+\pi^-\pi^+\pi^-$ not used here) DCS decays

 $B^+ \longrightarrow D^{(*)} K^{(*)+} ADS method \qquad \stackrel{\text{Alwood, Durinez, Sonn, PRL 78, 3257 (1997), }}{\text{PRD 63, 036005 (2001)}}$

- Use measured B^{\pm} yields to determine ADS observables

$$R_{ADS} = \frac{\Gamma(B^- \to D[K^+\pi^-]K^-) + \Gamma(B^+ \to D[K^-\pi^+]K^+)}{\Gamma(B^- \to D[K^-\pi^+]K^-) + \Gamma(B^+ \to D[K^+\pi^-]K^+)} = 2r_B r_D \cos\gamma\cos(\delta_B + \delta_D) + r_B^2 + r_D^2$$

 $A_{ADS} = \frac{\Gamma(B^{-} \to D[K^{+}\pi^{-}]K^{-}) - \Gamma(B^{+} \to D[K^{-}\pi^{+}]K^{+})}{\Gamma(B^{-} \to D[K^{+}\pi^{-}]K^{-}) + \Gamma(B^{+} \to D[K^{-}\pi^{+}]K^{+})} = \frac{2r_{B}r_{D}\sin\gamma\sin(\delta_{B} + \delta_{D})}{R_{ADS}}$

- Not enough information (2 observables, 5 unknows)
 - r_D , δ_D external inputs
 - $r_D = 0.0603 \pm 0.0025$, assumed all irreducible
 - $\cos \delta_{\rm D} = \cos 60^{\circ} \pm 0.35 \pm 0.07$, assume 0.035 irreducible
 - Still unsolvable \Rightarrow constraints on r_B

$$(x_{\mp} + r_D \cos \delta_D)^2 + (y_{\mp} - r_D \sin \delta_D)^2 = R_{ADS} (1 \pm A_{ADS})$$

- R_{ADS} , A_{ADS} poorly measured so far
 - Evaluate B[±] yields using yields of normalization channel (CA) from current BaBar analyses + assumptions on values of physics parameters Experimentally

Estimated irreducible experimental systematic error on R_{ADS} , A_{ADS} : 0.01

similar to GLW

analysis

+ADS

15

6.9

2.4

2.1

1.9

1.8

1.7

1.6

Reducing Dalitz model dependence/systematics

- Dalitz model systematic uncertainty seems to be under control up to $\sim 3^{\circ}$ level
- Further reduction seems difficult and/or impossible
 - Phenomenological Dalitz models with quasi-two body (Q2B) approach is an approximation to the 3-body dynamics
 - Some arbitrarity in the evaluation of the Q2D model systematic uncertainty
- Need model independent or quasi model independent method to:
 - Assess level of understanding of phenomenological model, or
 - Perform a (quasi) model independent analysis of γ
- Initially proposed by Gili et al. Giri et al, PRD 68, 054018 (2003) and further investigated by Bondar and Poluektov.

Bondar and Poluektov, Eur. Phys. J. C 47, 347 (2006) arXiv:0801.0840 [hep-ex]

• Other approaches, like a full PWA of ultra high statistics D⁰ tagged samples not yet investigated

Model Independent Approach

• Dalitz-plot distribution of D⁰ daughters (rewritten)

- If we have "optimal" binning and s_i , c_i are known in some way, we can obtain (x,y) by counting the number of B[±] events in each bin of the D⁰ Dalitz plot
 - This equires $\psi''(3770) \rightarrow D\overline{D}$ correlated data

CKM 2008, 9-13 September, 2008

F. Martínez-Vidal, Prospects for y at SFF

Model Independent Approach: projections

• For ~1000 CP and $K_{s}\pi\pi$ tagged $K_{s}\pi\pi$ events (corresponding to 750 pb⁻¹ from CLEO-c)

		B-stat. err.		D_{CP} -	stat. err.	$(K_S^0 \pi^+ \pi^-)^2$ -stat. err.		
Binning	Q	σ_x	σ_y	σ_x	σ_y	σ_x	σ_y	
$\mathcal{N} = 8$ (uniform)	0.57	0.033	0.060	0.005	0.010	0.015	0.032	
$\mathcal{N} = 8 (\Delta \delta_D)$	0.79	0.027	0.037	0.004	0.007	0.005	0.010	
$\mathcal{N} = 8 \text{ (optimal)}$	0.89	0.023	0.032	0.006	0.011	0.008	0.011	
$\mathcal{N} = 19$ (uniform)	0.69	0.027	0.055	0.004	0.011	-		
$\mathcal{N} = 20 \ (\Delta \delta_D)$	0.82	0.027	0.035	0.005	0.007	-	-	
$\mathcal{N} = 20$ (optimal)	0.96	0.022	0.029	0.008	0.011	-	-	
Unbinned	-	0.021	0.028	-	-	-	-	

Bondar and Poluektov, arXiv:0801.0840 [hep-ex]

- $\sigma_x, \sigma_y \sim 0.01 \Rightarrow \sigma_y \sim 5^\circ$, both consistent with current BaBar Dalitz model uncertainty
- Mostly reducible, up to an experimental irreducible contribution
- SuperB running at $\psi''(3770) \rightarrow D\overline{D}$ correlated data for 3 moths ($D\overline{D}$ mixing and CPV) Required for other purposes
 - − Scale $D\overline{D}$ data with factor 10% peak luminosity @ Y(4S) × 5% running time \Rightarrow 375 fb⁻¹ $D\overline{D}$ correlated data (×500 CLEO-c, ×25 BES-III statistics)
 - $\sigma_x, \sigma_y \sim 0.0005$, well below assumed 0.003 irreducible experimental systematics
 - ~1 week of running would be enough, but largest statistics will reduce to negligible level binning systematic uncertainty
 - In our exercise, assume "Dalitz model uncertainty" scaling with luminosity

CKM 2008, 9-13 September, 2008

F. Martínez-Vidal, Prospects for y at SFF

reducible (Model Independent)+ **GLW+ADS**

6

3

Conclusion

- Measurement of $\boldsymbol{\gamma}$ at the B Factories was unexpected
 - r_B ratios confirmed to be ~0.1 (and >0) \Rightarrow reliable predictions
 - $\delta\gamma \sim 20^{\circ}$ now, largely dominated by B⁺ \rightarrow D^(*)K^{(*)+} Dalitz
 - $-\delta\gamma$ ~10° after final analyses and combinations of current B Factories
- SSF can reach $\delta\gamma$ ~1° and below with:
 - Combination of charged modes: $B^+ \rightarrow D^{(*)}K^{(*)+}$. Self-tagging neutral modes, e.g. $B^0 \rightarrow D^{(*)}K^{(*)0}$, may help
 - Combination of methods: Dalitz, GLW, ADS
 - Use of correlated data (CP tagged $K_{S}\pi\pi, K_{S}KK$ and doubly tagged $K_{S}\pi\pi, K_{S}KK$)
 - SFF is a unique facility to provide large samples of correlated charm data
 - Enough with 3 months of data taking at ψ ''(3770) over a 5 years period
 - Key data also for other analyses (e.g. D-mixing and CPV in charm)
 - Only way to reach sub degree precision

F. Martínez-Vidal, Prospects for y at SFF