Measurements of Y at LHCb with ADS/GLW Strategies

Andrew Powell (University of Oxford) On behalf of the LHCb collaboration

CKM08 Conference, Rome, September 2008

Outline

• $B^{\pm} \! ightarrow \! DK^{\pm}$ at LHCb

- Sub-detectors important to this measurement
- Overview of Simulation Data
 - Monte Carlo used within studies reported here
- Selection and Sensitivity Predictions
 - $B^{\pm} \rightarrow D(hh)K^{\pm}$
 - Four-Body ADS: $B^{\pm} \rightarrow D(K\pi\pi\pi\pi)K^{\pm}$
 - $B^0 \rightarrow D(hh)K^{*0}$
- Summary

$B^{\pm} \rightarrow DK^{\pm}$ at LHCb

- LHCb statistics will enable full exploitation of all $B^{\pm} \rightarrow DK^{\pm}$ strategies, especially ADS/GLW
 - σ_{bb} ~ 500 µb at I4 TeV
 - $L_{int} \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - 10¹² bb pairs per 2 fb⁻¹(canonical year)
- Sensitivity to γ dependent on ability to gather high statistics samples of $B^{\pm} \rightarrow DK^{\pm}$ whilst controlling the background
- Good performance is achievable e.g. total efficiency (including acceptance, trigger and selection) for $B^{\pm} \rightarrow D(K\pi)K^{\pm}$ from simulation studies: $\varepsilon_{Tot} \sim 0.5 \%$
- Counting experiments no need for tagging or proper time determination
- $B^{\pm} \rightarrow DK^{\pm}$ performance is reliant upon two vital aspects of the LHCb detector...

	LHCb	Babar	Belle
$B^{-} \rightarrow D(K\pi)K^{-}$ Fav. Yields	~28,000	918*	I,220*
Luminosity (fb ⁻¹)	2	420 **	710**

*As shown at ICHEP 08

^{**}arXiv:0706.2786v1

The **RICH**

- Dangerous background from $B^{\pm} \rightarrow D\pi^{\pm}$
- $\mathsf{BR}(B^{\pm} \rightarrow D\pi^{\pm}) \sim \mathsf{IO} \times \mathsf{BR}(B^{\pm} \rightarrow DK^{\pm})$
- RICH Kaon ID: $\varepsilon_{avg} > 90\% \forall$ momenta
- $B/S \le 0.5$ typical for favoured modes

Tracking System

- Excellent vertex and p determination utilising Si vertex and tracking plane sub-detectors
- Vertex Resolutions:
 - Primary vertex $\sigma_z \sim 50 \ \mu m$
 - *B* decay vertex $\sigma_z \sim 200 \ \mu m$
- Mass Resolutions:
 - B[±] ~ 15 MeV
 - *D*⁰ ~ 6.5 MeV

Simulation Details

- Results presented here from the LHCb Monte Carlo studies
 - Pythia: Simulation of pp interaction at $\sqrt{s} = 14 \text{ TeV}$
 - EvtGen: *b*-quark evolution and decay
 - GEANT: Full detector response simulation
 - + digitisation and trigger simulation packages
- Background estimates for selections from statistically limited *B*-inclusive sample
 - ~34 million *bb* events within detector geometry
 - Equivalent to \sim 15 mins of LHCb running at nominal luminosity
- While large signal and dominating background samples also generated
- Typical selection requirements imposed upon:
 - Track |p|, p_t , and RICH PID,
 - Bachelor $K^{\pm} p_t$ and impact parameter
 - B and $D m_{inv}$
 - *B* and *D* vertex quality (χ^2)

 $B^{\pm} \rightarrow D(hh)K^{\pm}$

Two Strategies...

•
$$D_{CP} = K^+ K^-, \ \pi \pi^+$$

- Parameters identical for both final states (consider yields together – 2 distinct rates)
- 1 additional parameter:
 - N^{hh} (normalisation)

- Exploiting relation between $N^{K\pi}$ and N^{hh} :
 - 5 parameters
 - 6 distinct rates
 - γ solvable!

$B^{\pm} \rightarrow D(hh)K^{\pm}$ Sensitivity (2 fb⁻¹)

Method

- A χ^2 fit to the 6 rates is performed
- Yield and bkgds as shown in table

Constraints

- $\delta_{D(K\pi)} = (22^{+14}_{-16})^{\circ}$ from CLEO-c^{*}
- Constrain $\delta_{D(K\pi)}$ to $\left({}^{+14}_{-16}
 ight)^\circ$ of input

Assumed Inputs

- $r_B = 0.10$ (UTfit average 0.10 ± 0.02)
- $\delta_B = 130^\circ (PDG)$
- $r_{D(K\pi)} = 0.0616 \text{ (PDG)}$
- $\delta_{D(K\pi)}$ centred about (-180)°

• $\gamma = 60^{\circ}$

Mode	Sig. Yield	Bkg Est.
$B^+ o D(K\pi)K^+$ (fav)	28k	17,520 ± 993
$B^+ o D(K\pi)K^+$ (sup)	650 **	780 ± 509
$B^+ \rightarrow D(KK)K^+$	3k	3,664 ± 1,026
$B^+ ightarrow D(\pi\pi)K^+$	lk	3,570 ± 1,480

*(A phase shift of 180° is required when used within the ADS formalism)

Results

$B^{\pm} \rightarrow D(K3\pi)K^{\pm}$

- Also an ADS mode
- Although, the D decay is now *multi-bodied*...

What's Different?

• First, consider a point (x) in D-decay phase space (akin to that of a 2-body decay (e.g. $K\pi$))

$$\mathbf{B}^{-} \qquad \mathbf{A}_{\mathbf{D}^{0}}(\mathbf{x}) = \langle \mathbf{f} | \mathbf{D}^{0} \rangle_{(\mathbf{x})}$$

$$\mathbf{B}^{-} \qquad \mathbf{f}(\mathbf{D}) \mathbf{K}^{-} \qquad \zeta(\mathbf{x}) = \arg \left(\mathbf{A}_{\mathbf{D}^{0}}(\mathbf{x})^{*} \mathbf{A}_{\mathbf{\bar{D}}^{0}}(\mathbf{x}) \right)$$

$$\mathbf{\bar{D}} \mathbf{K}^{-} \qquad \mathbf{A}_{\mathbf{\bar{D}}^{0}}(\mathbf{x}) = \langle \mathbf{f} | \mathbf{\bar{D}}^{0} \rangle_{(\mathbf{x})}$$

$$\mathcal{M}^{2} \sim |A_{\rm D^{0}}(\mathbf{x})|^{2} + r_{\rm B}^{2} |A_{\bar{\rm D}^{0}}(\mathbf{x})|^{2} + 2r_{\rm B} |A_{\rm D^{0}}(\mathbf{x})| |A_{\bar{\rm D}^{0}}(\mathbf{x})| \cos(\delta_{\rm B} - \gamma + \zeta(\mathbf{x}))$$

- This is just the generalised 2-body ADS eqn., but what about multi-body final states...
- Total rate given by integrating over <u>ALL</u> allowable phase space:

$$\begin{split} \Gamma \propto A_{\rm f}^{\ 2} + r_{\rm B}^2 \bar{A}_{\rm f}^{\ 2} + 2r_{\rm B}A_{\rm f}\bar{A}_{\rm f}R_f\cos(\delta_{\rm B} - \gamma + \delta_{\rm D}) \\ \text{where:} \\ A_{\rm f}^{\ 2} = \int |A_{\rm D^0}(\mathbf{x})|^2 \, d\mathbf{x} \qquad R_f e^{i\delta_{\rm D}} = \frac{\int |A_{\rm D^0}(\mathbf{x})||A_{\bar{\rm D}^0}(\mathbf{x})|e^{i\zeta(\mathbf{x})} \, d\mathbf{x}}{A_{\rm f}\bar{A}_{\rm f}} \\ \bar{A}_{\rm f}^{\ 2} = \int |A_{\bar{\rm D}^0}(\mathbf{x})|^2 \, d\mathbf{x} \qquad 0 \leq R_f \leq 1 \quad \text{The "Coherence Factor"} \\ \text{[Phys Rev. D 68, 033003 (2003)]} \end{split}$$

Incorporating $K3\pi$ Multi-Body ADS

Method

- Add these additional 4 rates, incorporating $R_{K3\pi}$, into the 2-body χ^2 fit
- Yield and bkgds essentially equivalent to $K\pi$

Constraints

- Determination of $R_{K3\pi}$ possible at CLEO-c (see J. Libby's talk in previous session)
- Preliminary results shown opposite
- Additional terms added into χ^2 to incorporate constraints 1), 2) & 3)

Assumed Inputs

• $r_{D(K3\pi)} = 0.0568 \text{ (PDG)}$

Mode	Sig. Yield	Bkg Est.
$B^+ \rightarrow D(K3\pi)K^+$	31k	20,200 ± 2,500
$B^+ \rightarrow D(K3\pi)K^+$	530	1,200 ± 360

Combining 2 fb⁻¹ Results

Bottom Line: Improvement in sensitivity from including $K3\pi$ mode is equivalent to 70 – 100 % more data after one year of running

$$\sigma(\gamma) \sim (7.0 - 9.5)^{\circ}$$
 for 2 fb⁻¹

$B^0 \to D^0(hh)K^{*0}$

- Can be utilised in a way akin to that of $B^{\pm} \rightarrow D(hh)K^{\pm}$
- Particular sensitivity expected since both diagrams are colour suppressed ($r_{B0} \sim 0.4$)

$B^{\theta} \rightarrow D(hh)K^{*\theta}$ Sensitivity (2 fb⁻¹)

Method

- A χ^2 fit to the 6 rates is performed
- Yield and bkgds as shown in table

Constraints

- $\delta_{D(K\pi)} = (22^{+14}_{-16})^{\circ}$ from CLEO-c^{*}
- Constrain $\delta_{D(K\pi)}$ to $(^{+14}_{-16})^{\circ}$ of input

Assumed Inputs

- $r_{B0} = 0.40$
- $r_{D(K\pi)} = 0.0616 \text{ (PDG)}$
- $\delta_{D(K\pi)}$ centred about (-180)°

 $\delta_{B0}(^{\circ})$

 $\sigma_{\gamma}(^{\circ})$

• $\gamma = 60^{\circ}$

Results

*(A phase shift of 180° is required when used within the ADS formalism)

Summary

• With just 2 fb⁻¹ of data, LHCb will be able to harness the power of the ADS+GLW methods to perform precision measurements of γ

$$\sigma_{\gamma}(B^{\pm}) \sim (7.0 - 9.5)^{\circ}$$

 $\sigma_{\gamma}(B^{0}) \sim (5.0 - 13.0)^{\circ}$

- External constraints from CLEO-c hugely important in this measurement $(\delta_{D(K\pi)}, R_{K3\pi}, \delta_{D(K3\pi)})$
- Yet more modes to consider:
 - $D \rightarrow K\pi\pi^0$ (ADS)
 - $B^{\pm} \rightarrow D^{*}K^{\pm}$ (Bondar-Gershon)
- Ultimate precision will be achieved from "global" fit to all LHCb $B^{\pm} \rightarrow DK^{\pm}$ results (G. Wilkinson's talk in this session)