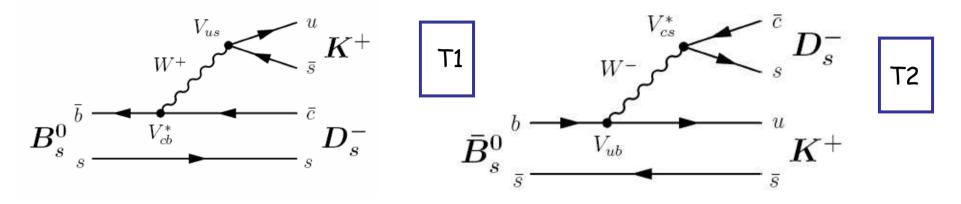

Time dependent measurements of gamma at LHCb

Angelo Carbone (INFN-Bologna) on behalf of LHCb collaboration

CKM 2008 Roma, 12 September 2008



- LHCb will explore different modes to measure γ through time dependent analysis
- Will present expected sensitivities from the decays:
 - $B_s \rightarrow D_s K$
 - $B^{0} \rightarrow D\pi$
 - Combined $B_s \rightarrow D_s K$ and $B^0 \rightarrow D\pi$ under U-spin symmetry assumption
- Preliminary studies are also underway
 - $B_s \rightarrow D_s K^*$ and $B^0 \rightarrow D\rho$
 - $B_s \rightarrow D_s K \pi \pi$

Strategy to measure γ from $B_s \rightarrow D_s K$ and $B^0 \rightarrow D\pi$

Consider tree diagrams +cc and the B⁰(s)↔B⁰(s) mixing graphs

- Interference between the tree diagrams will allows through a time dependent analysis a clean theoretical extraction of $\gamma^{+\phi}_{\rm d(s)}$
 - $\phi_{d(s)}$ is the week mixing phase associated with the mixing which can be measured with high precision
 - the mixing phases ϕ_d (ϕ_s) is (will be) precisely measured from $B_d \rightarrow J/\psi K_s$ ($B_s \rightarrow J/\psi \phi$, see Gaia Lanfranchi's talk)
- This allows to measure $\gamma!$

NFN

• From four time decay rates is possible to construct two asymmetries for example in the $B_s \rightarrow D_s K$ case

$$\mathcal{A}_{\rm CP}(D_s^+K^-) \equiv \frac{B_s^0 \to D_s^+K^- - \overline{B_s^0} \to D_s^+K^-}{B_s^0 \to D_s^+K^- + \overline{B_s^0} \to D_s^+K^-} = \frac{C_s \cos \Delta m_s t + S_s \sin \Delta m_s t}{\cosh(\Delta\Gamma_s t/2) - A_{\Delta\Gamma} \sinh(\Delta\Gamma_s t/2)}$$

$$\mathcal{A}_{\rm CP}(D_s^-K^+) \equiv \frac{B_s^0 \to D_s^-K^+ - \overline{B_s^0} \to D_s^-K^+}{B_s^0 \to D_s^-K^+ + \overline{B_s^0} \to D_s^-K^+} = \frac{\overline{C_s} \cos \Delta m_s t + \overline{S_s} \sin \Delta m_s t}{\cosh(\Delta \Gamma_s t/2) - \overline{A_{\Delta \Gamma}} \sinh(\Delta \Gamma_s t/2)}$$

- 6 Observables, S, \overline{S} , C, \overline{C} , $A_{\Delta\Gamma}$, $\overline{A}_{\Delta\Gamma}$
 - Using the untagged analysis is possible to measure $A_{\Delta\Gamma}, \, \overline{A}_{\Delta\Gamma}$
- For B_d case we only have 4 observables: C_d , S_d , C_d , \mathcal{T}_d ($\Delta \Gamma_d$ very small !)

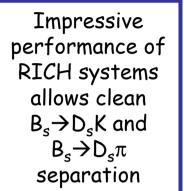
where

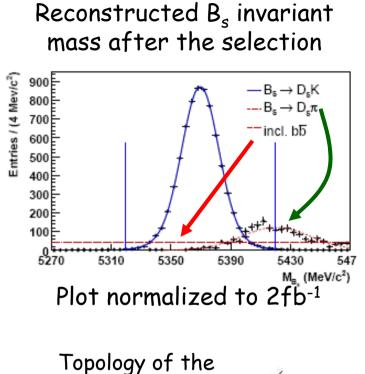
• Observables are function of γ , ϕ_q , δ_q and x_q

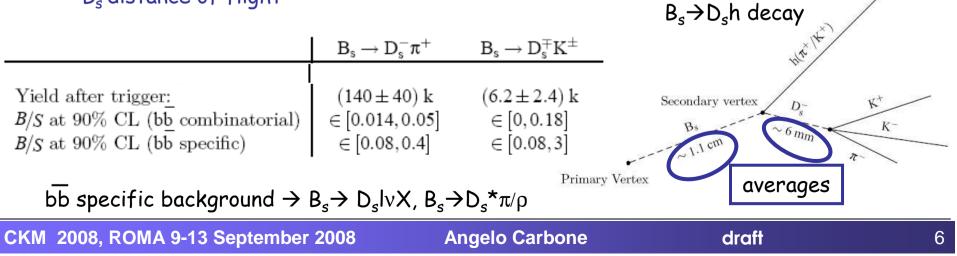
$$S = \frac{2x_q \sin(\delta_q + \phi_q - \gamma)}{(x_q^2 + 1)} \qquad \qquad C_q = -\frac{1 - x_q^2}{1 + x_q^2}$$

$$R_{b} = \left(1 - \frac{\lambda^{2}}{2}\right) \frac{1}{\lambda} \frac{V_{ub}}{V_{cb}} \approx 0.4 \begin{array}{c} a_{d}, a_{s} \text{ are hadronic} \\ \text{parameter of the} \\ \text{order of 1} \end{array} \quad x_{s} = R_{b}a_{s} \approx 0.4 \quad x_{d} = -\left(\frac{\lambda^{2}R_{b}}{1 - \lambda^{2}}\right)a_{d} \approx 0.02$$

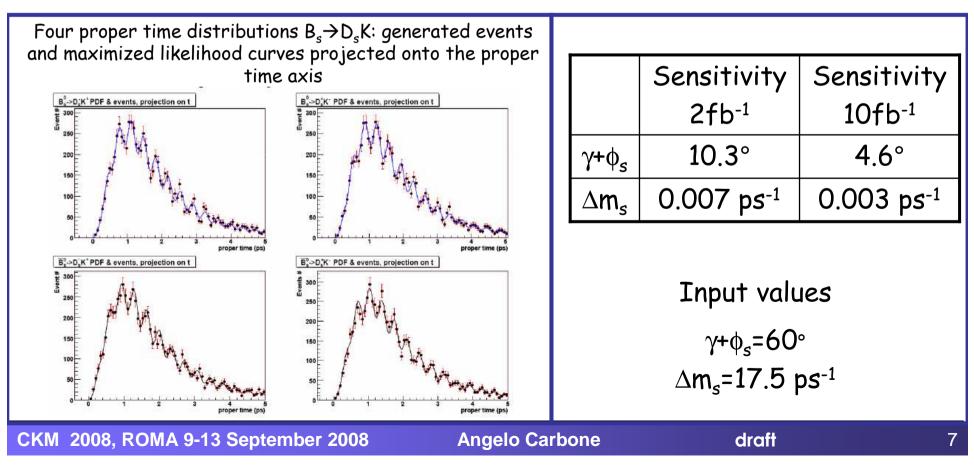
- In principle is possible to extract $x_{d,s}$ from the cosine term
 - x_s is large enough to be fitted from data
 - x_d must be constrained externally
 - Recent BaBar analysis of the decay B→Dπ has estimated x_d from the relation using SU(3) [hep-ex/0803.4296]
- In order to extract γ in this studies we consider an overall 20% theoretical error on x_d
- Improving the statistics and the theoretical knowledge, it is expected to have $\sigma(x_d)$ ~10% by the end of LHCb data taking

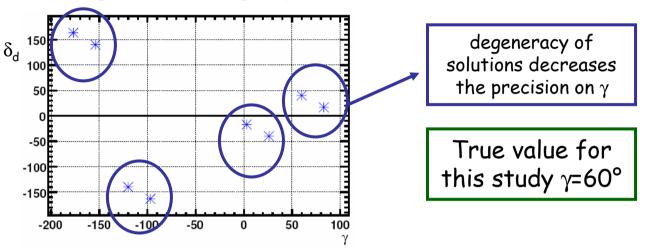



$B_s \rightarrow D_s h$ selection with full LHCb simulation



- Simulated samples of signal and background events
- Selection criteria based on:
 - RICH K[±] π[±] ID
 - \mathbf{P}_{T} and impact parameter of K and π
 - B_s and D_s invariant mass
 - B_s and D_s vertex quality
 - B_s and D_s impact parameter with respect all reconstructed primary verteces
 - B_s distance of flight



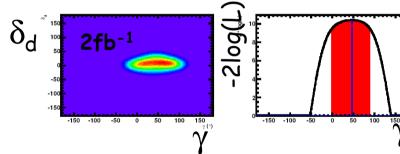

Sensitivity studies on γ from $B_s \rightarrow D_s K$

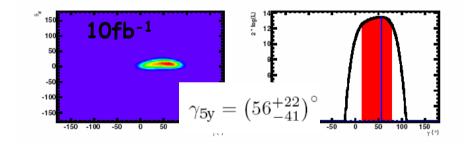
- Fast Monte Carlo toys performed
 - Events are generated according to the toy MC model based on the LHCb experiment full simulation and selection studies results
- In order to obtained the expected uncertainty on $\gamma + \phi_s$ a simultaneous likelihood fit to the decay time distributions of $B_s \rightarrow D_s K$ and $B_s \rightarrow D_s \pi$ have been performed

Sensitivity studies on γ from B⁰ \rightarrow D π

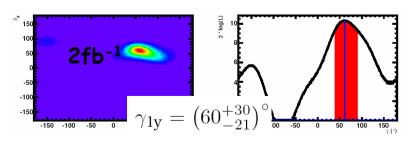
• In addition to the theoretical uncertainties on x_d the extraction of γ from $B^0 \rightarrow D\pi$ suffers from a eightfold ambiguity on the extracted value of γ

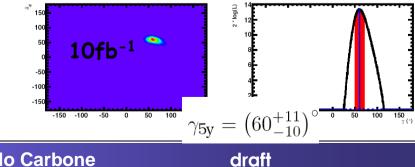
- In order to resolve the degenerate solutions one can introduce information from the $B_s \rightarrow D_s K$ decay
 - U-spin symmetry can be use to related δ_d to $\delta_s \rightarrow \delta_d = \delta_s$
 - δ_s will be measured with γ from $B_s \rightarrow D_s K$ decay
 - The precision on δ_s it expected to be ~10°
 - In the next studies, when U-spin symmetry is used a conservative assumption on $\sigma(\delta_s)$ has been taken to account breaking effect
 - Error of 20° for 2fb⁻¹ and 10° for 10fb⁻¹


Sensitivity studies on γ from $B^0 \rightarrow D\pi$

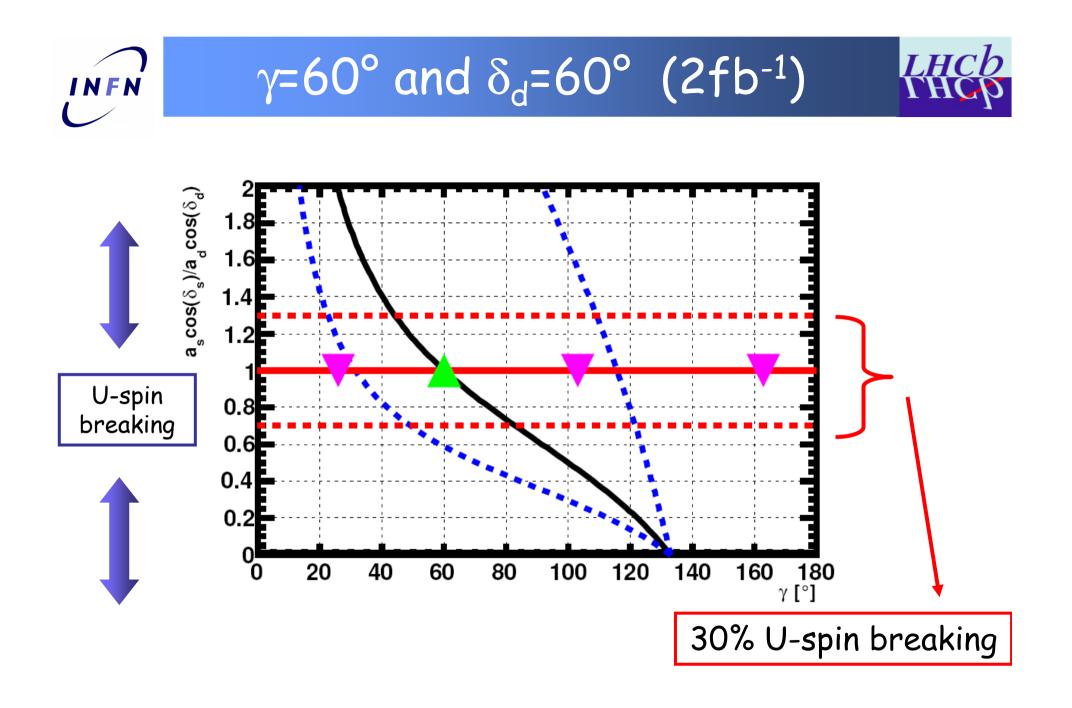


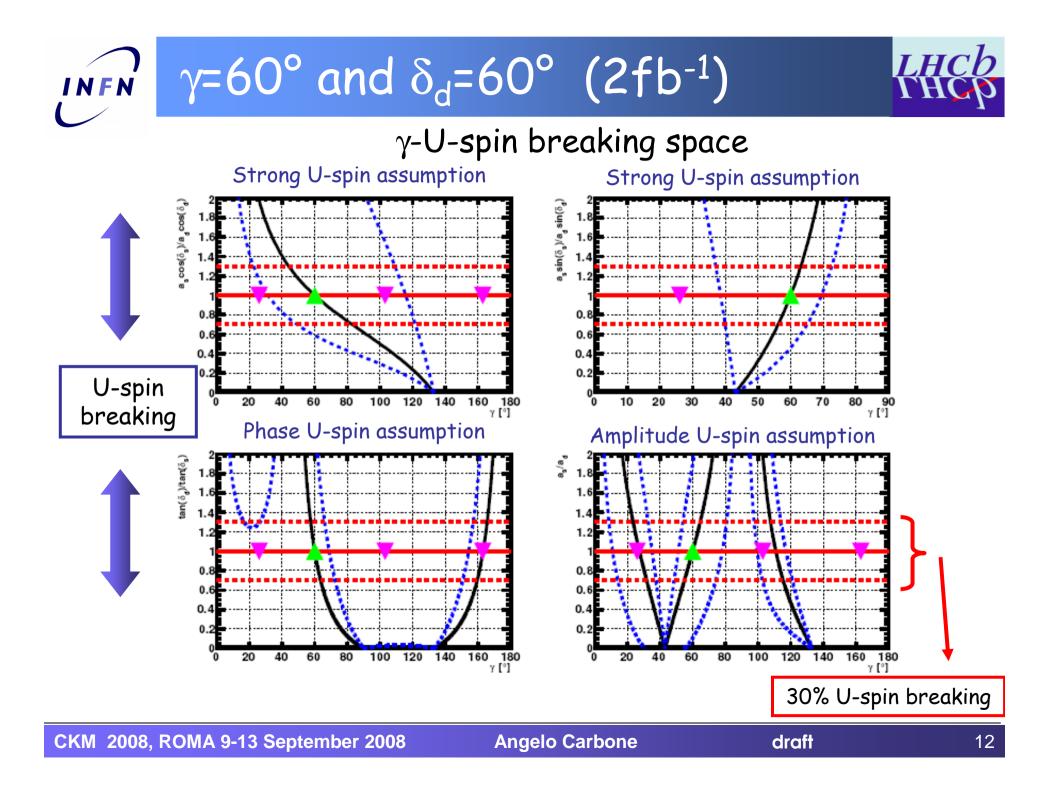
- Based on the full LHCb experiment simulation and signal selection studies toy Monte Carlo studies have been performed in order to evaluate γ sensitivity
 - Background included

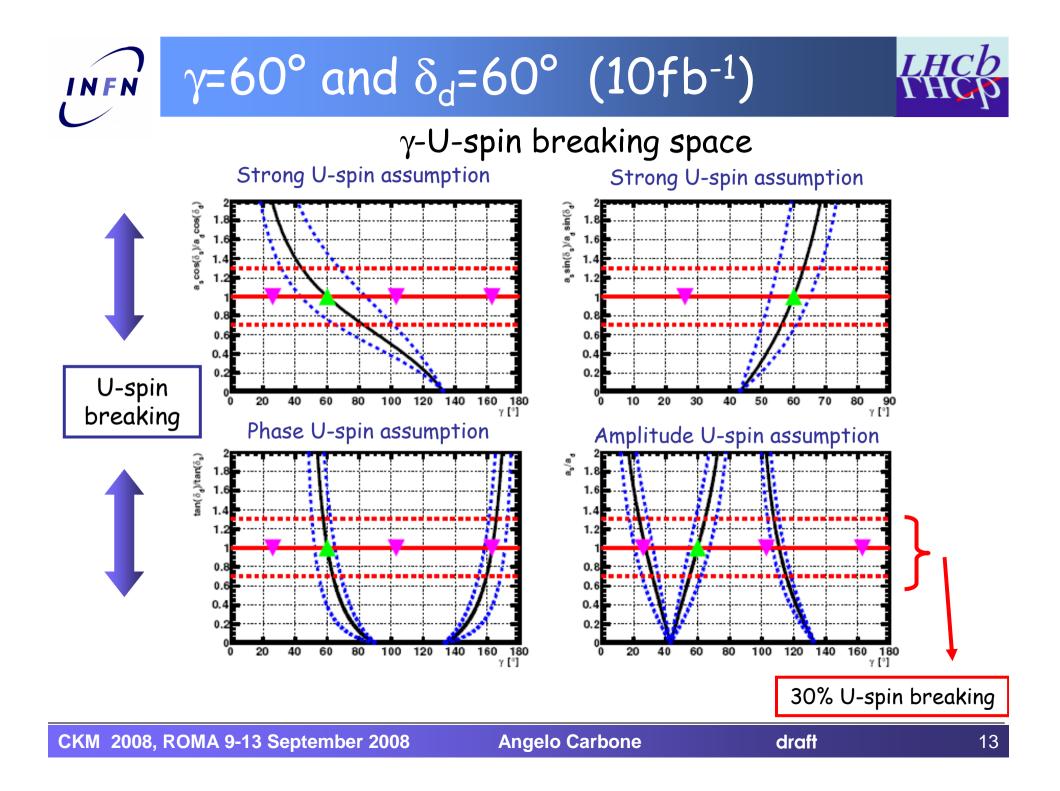

INFN


- Assumed exact knowledge of mixing phase ϕ_d
- Assumed U-spin symmetry
- Scenario 1: γ =60° and δ_d =10°
 - Small value of strong phase corresponding to factorization limit

Scenario 2: γ =60° and δ_d =60° (explores non-factorisable effects)




Combined extraction of γ from $B^0 \rightarrow D\pi$ and $B_c \rightarrow D_c K$



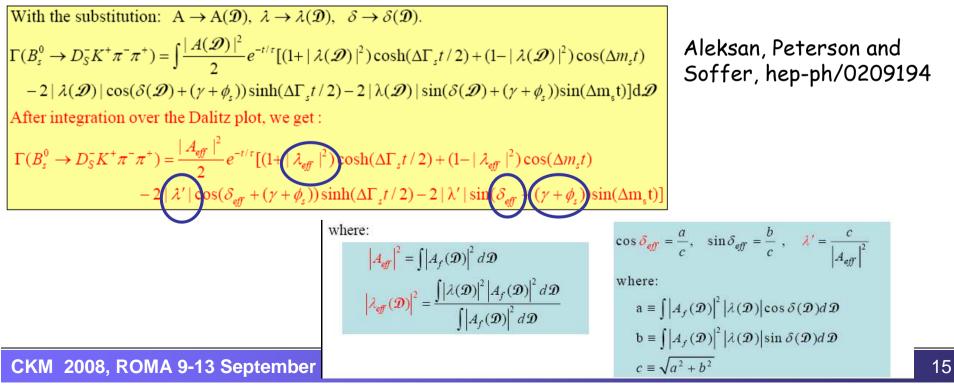
- The combined extraction of γ relies on the U-spin symmetry between the channels $B^0 \rightarrow D_d u_d$ and $B_s \rightarrow D_s \overline{u}_s$
 - Replacing all down quarks in the decay by strange quarks
- It is possible to extract γ unambiguously without any external knowledge of x_d
- Three different scenarios can be considered
 - Strong U-spin assumption: equal strong amplitudes and phases \rightarrow two relation to extract unambiguously γ
 - Amplitude U-spin assumption: equal strong amplitudes \rightarrow one relation to extract unambiguously γ
 - Phases U-spin assumption: equal strong amplitudes \rightarrow one relation to extract unambiguously γ

INFN

Summary of combined extraction of γ

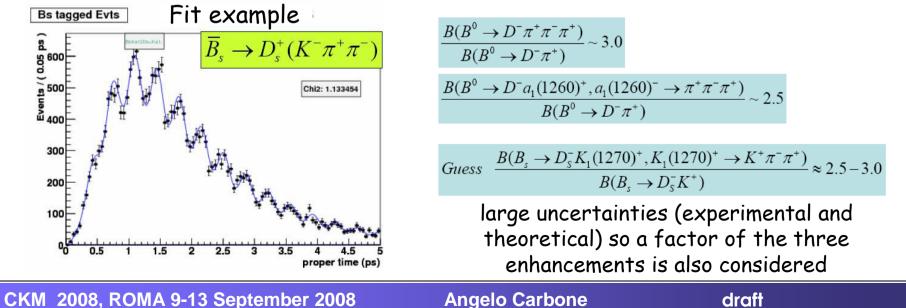
- The combined U-spin analysis of the channels $B^0 \rightarrow D\pi$ and $B_s \rightarrow D_s K$ allows for an ambiguous extraction of γ under a variety of theoretical assumptions
 - It has the advantage of not requiring x_d to be known
- Performance on γ quoted considers the smallest upper error in any of the four U-spin assumption and similarly for the lower error
- Statistical and systematic error (30% of U-spin breaking) from the same U-spin assumption

	σ ^{stat} 1y (2fb -1)	$\sigma^{ m syst}_{1y}$ (2fb-1)	$\sigma^{ m stat}_{5y}$ (10fb-1) $\sigma^{ m syst}_{5y}$ (10fb ⁻¹)
$\gamma=60^\circ, \delta_{s,d}=60^\circ$	$-9^{\circ}, +9^{\circ}$			$\pm 3^{\circ}$
$\gamma=60^\circ, \delta_{s,d}=10^\circ$	$-20^\circ, +30^\circ$	$-10^\circ, +22^\circ$	$-8^\circ, +12^\circ$	$-15^\circ, +4^\circ$


- Even if this combined analysis is outperformed by other analyses at measuring γ it can be used to understand the scale of U-spin breaking
 - Any observable difference between the fitted values of γ can be used to constrain the U-spin breaking parameters

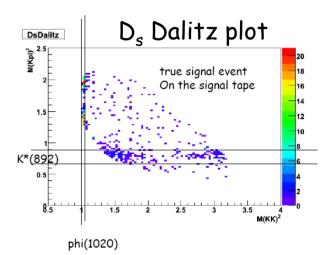
Angelo Carbone

Additional channel: $B_s \rightarrow D_s K \pi \pi$



- The final state $B_s \rightarrow D_s K\pi\pi$ may contain a non-resonant and several resonant contributions in any given $M(K\pi\pi)$ mass window.
 - It is expected some region dominated by K1
- In general each point in the Dalitz plot has a strong phase difference between the b \rightarrow c and b \rightarrow u diagrams and depends on the $\mathcal D$ Dalitz plot position
 - Due to the strong phase variation an addition parameter needs to be fit (3 are in the $B_s \rightarrow D_s K$ case)
 - 6 observables and 4 unknowns

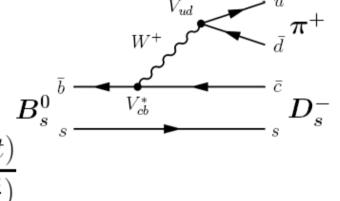
Additional channel: $B_s \rightarrow D_s(K\pi\pi)$


- Preliminary Monte Carlo studies show that is possible to collect with 2fb⁻¹
 - 16k events if $BR(B_s \rightarrow D_s K \pi \pi) / B(B_s \rightarrow D_s K) \sim 3$
 - With B/S < 0.9 @ 90 % C.L.
- Preliminary toy MC studies show that $B_s \rightarrow D_s K \pi \pi$ looks to be a promising mode to include in the γ measurement
 - $\sigma(\gamma) \sim 5^{\circ}$, for $B_s \rightarrow D_s K$ (10fb⁻¹) -vs-
 - $\sigma(\gamma) \sim 13^{\circ}$, for $Bs \rightarrow DsK\pi\pi$ if $BR(B_s \rightarrow D_sK\pi\pi)/B(B_s \rightarrow D_sK) \sim 3$

INFN Additional channel: $B_s \rightarrow D_s K^*$ and $B \rightarrow D\rho$

- $B_s \rightarrow D_s K^*$ will be used to extracted γ the same way as $B_s \rightarrow D_s K$
- Combined with the $B \rightarrow D\rho$ is possible to extract γ with U-spin symmetry assumption in the same way as in $B_s \rightarrow D_s K$ and $B \rightarrow D\pi$
- Preliminary studies underway, with 2fb⁻¹ will collect
 - 1M of $B \rightarrow D\rho$ with $B/S \sim 1.4$
 - $3k B_s \rightarrow D_s K^*$ (need more MC statistics to evaluate B/S)

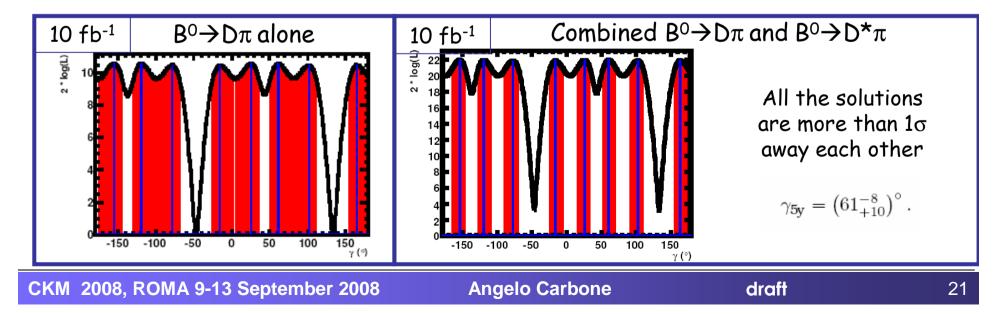
 $\phi(K^+ K^-)\pi^ K^+ K^- \pi^+$


- Time dependent measurements of γ at LHCb are promising
- Sensitivity on γ expected to be 10° (5°) with 2fb⁻¹ (10fb⁻¹) from the time dependent analysis of the decay $B_s \rightarrow D_s K$
 - Measurements theoretically clear
- U-spin symmetry relation between $B^0 \rightarrow D\pi$ and $B_s \rightarrow D_s K$ will be useful either to extract γ or understanding the U-spin breaking
- In case of large strong phases the sensitivity on γ is of 9°(5°) with systematic error from U-spin breaking effects of 4° (3°) and 2fb⁻¹ (10fb⁻¹)
- Other modes will be use to measure γ
 - $B_s \rightarrow D_s K \pi \pi$
 - $B_s \rightarrow D_s K^*$ and $B \rightarrow D\rho$
 - B→D*π

Sensitivity studies on γ from $B_s \rightarrow D_s K$

- In order to measure γ from $B_s \rightarrow D_s K$, the $B_s \rightarrow D_s \pi$ mode can be use to constrain ΔM_s and the wrong tagging fraction
- For the $B_s \rightarrow D_s \pi$ only one tree decay exists
 - B_s can only decay instantaneously into $D_s^-\pi^+$ while the decay into $D_s^+\pi^-$ can only occur after the mixing
- $S = A_{\Delta\Gamma} = 0$ and C = 1
- Using the flavour asymmetry

- $A^{flav} = \frac{\Gamma_{\bar{B}_{s}^{0} \to f} \Gamma_{B_{s}^{0} \to f}}{\Gamma_{\bar{B}_{s}^{0} \to f} + \Gamma_{B_{s}^{0} \to f}} = -D \cdot \frac{\cos(\Delta m_{s}t)}{\cosh(\frac{\Delta\Gamma_{s}t}{2})}$ • It is possible to measure the dilution factor D=1-2 ω (ω =wrong tagging fraction) and ΔM_{s}
- Under the reasonable assumption that ω is the same in $B_s \rightarrow D_s \pi$ and $B_s \rightarrow D_s K$ one can fit all decay distributions simultaneously


Angelo Carbone

Including information from $B^0 \rightarrow D^*(D^0\pi^{\pm})\pi^{\mp}$

- Not needs of U-spin relation to resolve degenerate solution
- Decay mode depends on γ in an analogous way to $B^0 \rightarrow D\pi$
 - 206k fully triggered events expected to be collected by LHCb with 2fb⁻¹
- From a theoretical point of view the strong phase is expected to be 180° different from the strong phases of $B^0 \! \! \rightarrow \! D\pi$
 - This allows the combined γ precision of the two modes to be better then the addition in quadrature
 - Better discrimination of ambiguous solutions

INFN

