

V_{us} from τ Decays

A. Pich IFIC, Valencia

HADRONIC TAU DECAY

$$d_{\theta} = V_{ud} \ d + V_{us} \ s$$

Only lepton massive enough to decay into hadrons

$$R_{\tau} = \frac{\Gamma(\tau^- \to v_{\tau} + \text{Hadrons})}{\Gamma(\tau^- \to v_{\tau} \ e^- \ \overline{v_e})} \approx N_C \qquad ; \qquad R_{\tau} = \frac{1 - B_e - B_{\mu}}{B_e} = 3.639 \pm 0.011$$

 V_{us} from τ decays

$$\frac{\sigma(e^+e^- \rightarrow \text{had})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 12 \pi \operatorname{Im} \Pi_{\text{em}}(s)$$

$$\Pi_{\rm em}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{\rm em}^{\mu}(x) J_{\rm em}^{\nu}(0)] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{\rm em}(q^2)$$

$$\frac{\sigma(e^+e^- \rightarrow \text{had})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 12 \pi \, \text{Im} \, \Pi_{\text{em}}(s)$$

 $\Pi_{\rm em}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{\rm em}^{\mu}(x) J_{\rm em}^{\nu}(0)] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{\rm em}(q^2)$

$$R_{\tau} \equiv \frac{\Gamma(\tau \rightarrow \nu_{\tau} + \text{had})}{\Gamma(\tau \rightarrow \nu_{\tau} e^{-} \overline{\nu_{e}})} = 12\pi \int_{0}^{m_{\tau}^{2}} dx \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \text{Im} \Pi^{(1)}(s) + \text{Im} \Pi^{(0)}(s)\right]$$

 $\Pi^{(J)}(s) \equiv \left| V_{ud} \right|^2 \left[\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s) \right] + \left| V_{us} \right|^2 \left[\Pi^{(J)}_{us,V}(s) + \Pi^{(J)}_{us,A}(s) \right]$

 $\Pi_{ij,J}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{ij}^{\mu}(x) J_{ij}^{\nu}(0)^{\dagger}] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{ij,J}^{(1)}(q^2) + q^{\mu}q^{\nu} \Pi_{ij,J}^{(0)}(q^2)$

Braaten-Narison-Pich

$$R_{\tau} = \frac{\Gamma(\tau^{-} \to v_{\tau} + \text{had})}{\Gamma(\tau^{-} \to v_{\tau} e^{-} \overline{v_{e}})} = 12\pi \int_{0}^{1} dx \, (1-x)^{2} \left[(1+2x) \, \text{Im} \, \Pi^{(1)}(x m_{\tau}^{2}) + \, \text{Im} \, \Pi^{(0)}(x m_{\tau}^{2}) \right]$$

$$R_{\tau} = 6\pi i \oint_{|x|=1} dx (1-x)^2 \left[(1+2x) \Pi^{(0+1)}(xm_{\tau}^2) - 2x \Pi^{(0)}(xm_{\tau}^2) \right]$$

Braaten-Narison-Pich

$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to v_{\tau} + \text{had})}{\Gamma(\tau^{-} \to v_{\tau} e^{-} \overline{v_{e}})} = 12\pi \int_{0}^{1} dx \, (1-x)^{2} \left[(1+2x) \, \text{Im} \, \Pi^{(1)}(x m_{\tau}^{2}) + \, \text{Im} \, \Pi^{(0)}(x m_{\tau}^{2}) \right]$$

K

$$P_{\tau} = 6\pi i \oint_{|x|=1} dx (1-x)^2 \left[(1+2x) \Pi^{(0+1)}(xm_{\tau}^2) - 2x \Pi^{(0)}(xm_{\tau}^2) \right]$$
$$\Pi^{(J)}(s) = \sum_{D=2n} \frac{C_D^{(J)}(s,\mu) \left\langle O_D(\mu) \right\rangle}{(-s)^{D/2}} \qquad \text{OPE}$$

Braaten-Narison-Pich

$$R_{\tau} = \frac{\Gamma(\tau \to v_{\tau} + \text{had})}{\Gamma(\tau \to v_{\tau} e^{-} \overline{v_{e}})} = 12\pi \int_{0}^{1} dx \ (1 - x)^{2} \left[(1 + 2x) \text{ Im } \Pi^{(1)}(x m_{\tau}^{2}) + \text{ Im } \Pi^{(0)}(x m_{\tau}^{2}) \right]$$

$$R_{\tau} = 6\pi i \oint_{|x|=1} dx \ (1 - x)^{2} \left[(1 + 2x) \Pi^{(0+1)}(x m_{\tau}^{2}) - 2x \Pi^{(0)}(x m_{\tau}^{2}) \right]$$

$$\Pi^{(J)}(s) = \sum_{D=2n} \frac{C_{D}^{(J)}(s, \mu) \langle O_{D}(\mu) \rangle}{(-s)^{D/2}} \quad \text{OPE}$$

$$R_{\tau} = N_C S_{\text{EW}} \left(1 + \delta_{\text{P}} + \delta_{\text{NP}} \right) = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

$$\begin{split} S_{\rm EW} = &1.0201~(3) \qquad ; \qquad \qquad \delta_{\rm NP} = -0.0059 \pm 0.0014 \\ \text{Marciano-Sirlin, Braaten-Li, Erler} \qquad \qquad \text{Fitted from data} \end{split}$$

$$\delta_{\rm P} = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + \dots \approx 20\%$$

$$a_{\tau} \equiv \alpha_s(m_{\tau}) / \pi$$

 V_{us} from τ decays

Perturbative:
$$(m_q=0)$$

 $-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n \left(\frac{\alpha_s(-s)}{\pi}\right)^n$; $K_0 = K_1 = 1$, $K_2 = 1.63982$, $K_3 = 6.37101$
 $\longrightarrow \qquad \delta_P = \sum_{n=1}^{\infty} K_n A^{(n)}(\alpha_s) = a_\tau + 5.20 a_\tau^2 + 26 a_\tau^3 + 127 a_\tau^4 + \cdots$
Le Diberder- Pich '92
 $A^{(n)}(\alpha_s) = \frac{1}{2\pi i} \oint_{|x|=1}^{\infty} \frac{dx}{x} (1-2x+2x^3-x^4) \left(\frac{\alpha_s(-s)}{\pi}\right)^n = a_\tau^n + \cdots$; $a_\tau = \alpha_s(m_\tau)/\pi$

 V_{us} from τ decays

Similar predictions for $R_{\tau,V}$, $R_{\tau,A}$, $R_{\tau,S}$ and the moments

$$R_{\tau}^{kl}(s_0) \equiv \int_0^{s_0} ds \, \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l \, \frac{dR_{\tau}}{ds}$$

Different sensitivity to power corrections through k, I

The non-perturbative contribution to R_{τ} can be obtained from the invariant-mass distribution of the final hadrons:

$$\delta_{\rm NP} = -0.0059 \pm 0.0014$$

Davier et al. (ALEPH data)

 V_{us} from τ decays

SU(3) Breaking

$$R_{\tau}^{kl} = N_C S_{\rm EW} \left\{ \left(\left| V_{ud} \right|^2 + \left| V_{us} \right|^2 \right) \left[1 + \delta^{kl(0)} \right] + \sum_{D \ge 2} \left[\left| V_{ud} \right|^2 \delta_{ud}^{kl(D)} + \left| V_{us} \right|^2 \delta_{us}^{kl(D)} \right] \right\}$$

$$\delta R_{\tau}^{kl} = \frac{R_{\tau,V+A}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} = N_C S_{\text{EW}} \sum_{D \ge 2} \left[\delta_{ud}^{kl(D)} - \delta_{us}^{kl(D)} \right]$$

 V_{us} from τ decays

Strange Spectral Function: SU(3) Breaking

(k,l)	ALEPH	OPAL
(0,0)	0.39 ± 0.14	0.26 ± 0.12
(1,0)	0.38 ± 0.08	0.28 ± 0.09
(2,0)	0.37 ± 0.05	0.30 ± 0.07
(3,0)	0.40 ± 0.04	0.33 ± 0.05
(4,0)	0.40 ± 0.04	0.34 ± 0.04

 V_{us} from τ decays

$$\delta R_{\tau}^{kl} \equiv \frac{R_{\tau,V+A}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} \approx 24 \frac{m_s^2(m_{\tau}^2)}{m_{\tau}^2} \Delta_{kl}(\alpha_s)$$

$$\longrightarrow \mathbf{m}_{\mathbf{S}}(\mathbf{m}_{\mathbf{T}}) \quad \text{determination}$$

V_{us} and QCD uncertainties

$$\delta R_{\tau}^{kl} = \frac{R_{\tau,V+A}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} \approx 24 \frac{m_s^2(m_{\tau}^2)}{m_{\tau}^2} \Delta_{kl}(\alpha_s)$$

Known to
$$O(\alpha_s^3)$$

- $\Delta_{kl}(\alpha_s)$ gets longitudinal (J=0) and transverse (J=0+1) contributions
- Divergent QCD series for J=0
- Longitudinal contribution determined through data:
 - Kaon pole $(K \rightarrow \mu \nu)$

(dominant J=0 contribution)

- Pion pole $(\pi \rightarrow \mu \nu)$
- $(K\pi)_{J=0}$ (S-wave $K\pi$ scattering)
- ...
- Smaller uncertainties

	$R^{00,L}_{us,A}$	$R^{00,L}_{us,V}$	$R^{00,L}_{ud,A}$		
Theory:	-0.144 ± 0.024	-0.028 ± 0.021	$-(7.79\pm0.14)\cdot10^{-3}$		
Phenom:	-0.135 ± 0.003	-0.028 ± 0.004	$-(7.77\pm0.08)\cdot10^{-3}$		

$$\delta R_{\tau,\text{th}}^{00} \equiv \underbrace{0.1544(37)}_{J=0} + \underbrace{0.062(15)}_{m_{s}(m_{\tau}) = 0.100(10)} = 0.216(16)$$

Large uncertainty from V_{us}

Strong sensitivity to V_{us}

 V_{us} from τ decays

$$\left|V_{us}\right|^{2} = \frac{R_{\tau,S}^{00}}{\frac{R_{\tau,V+A}^{00}}{\left|V_{ud}\right|^{2}} - \delta R_{\tau,\text{th}}^{00}}$$

τ data: $R_{\tau,S}^{00} = 0.1686$ (47) $R_{\tau,V+A}^{00} = 3.471$ (11) PDG 06: $|V_{ud}| = 0.97377$ (27)

$$\left|V_{us}\right|^{2} = \frac{R_{\tau,S}^{00}}{\frac{R_{\tau,V+A}^{00}}{\left|V_{ud}\right|^{2}} - \delta R_{\tau,\text{th}}^{00}}$$

τ data: $R_{\tau,S}^{00} = 0.1686$ (47) $R_{\tau,V+A}^{00} = 3.471$ (11) PDG 06: $|V_{ud}| = 0.97377$ (27)

 $\delta R_{\tau,\text{th}}^{00} = 0$ \implies $|V_{us}| = 0.215 (3)$

$$\left|V_{us}\right|^{2} = \frac{R_{\tau,S}^{00}}{\frac{R_{\tau,V+A}^{00}}{\left|V_{ud}\right|^{2}} - \delta R_{\tau,\text{th}}^{00}}$$

τ data: $R_{\tau,S}^{00} = 0.1686$ (47) $R_{\tau,V+A}^{00} = 3.471$ (11) **PDG 06:** $|V_{ud}| = 0.97377$ (27) δ $R_{\tau,th}^{00} = 0$ → $|V_{us}| = 0.215$ (3)

Taking as input (from non τ sources) $m_s(m_{\tau}) = 100 \pm 10$ MeV :

 $\delta R_{\tau,\text{th}}^{00} = 0.216 \ (16)$ $|V_{us}| = 0.2212 \pm 0.0031_{\text{exp}} \pm 0.0005_{\text{th}}$

$$\left|V_{us}\right|^{2} = \frac{R_{\tau,S}^{00}}{\frac{R_{\tau,V+A}^{00}}{\left|V_{ud}\right|^{2}} - \delta R_{\tau,\text{th}}^{00}}$$

τ data: $R_{\tau,S}^{00} = 0.1686$ (47) $R_{\tau,V+A}^{00} = 3.471$ (11) **PDG 06:** $|V_{ud}| = 0.97377$ (27) δ $R_{\tau,th}^{00} = 0$ → $|V_{us}| = 0.215$ (3)

Taking as input (from non τ sources) $m_s(m_{\tau}) = 100 \pm 10$ MeV :

$$\delta R_{\tau,\text{th}}^{00} = 0.216 \ (16)$$
 $|V_{us}| = 0.2212 \pm 0.0031_{\text{exp}} \pm 0.0005_{\text{th}}$

K₁₃: $|V_{us}| = 0.2233 \pm 0.0024$ $[f_+(0) = 0.97 \pm 0.01]$

The τ could give the most precise V_{US} determination

First Measurements from Babar and Belle

	Mode	$\mathscr{B}(10^{-3})$ [15]	Update	ed $\mathscr{B}(10^{-3})$ v	vith results f	from [20–22]	
	$rac{K^-}{K^-\pi^0}$	$\begin{array}{c} 6.81 \pm 0.23 \\ 4.54 \pm 0.30 \end{array}$	Average v	[Replace w vith 4.16 ± 0 .	with 7.15 ± 0 $18 \Rightarrow 4.26 \pm 0$.03] $\pm 0.16 (S = 1.0)$	
	$ar{K}^0 \pi^- \ K^- \pi^0 \pi^0$	$\begin{array}{c} 8.78 \pm 0.38 \\ 0.58 \pm 0.24 \end{array}$	Average v	with 8.08 ± 0.2	$26 \Rightarrow 8.31 \pm$	$\pm 0.28 \ (S = 1.3)$	S. Baneriee
	$ar{K}^0 \pi^- \pi^0 onumber \ K^- \pi^+ \pi^-$	$\begin{array}{c} 3.60\pm0.40\\ 3.30\pm0.28\end{array}$	Average v	with 2.73 ± 0.4	$09 \Rightarrow 2.80 \exists$	$\pm 0.16 \ (S = 1.9)$	KAON'07
	$K^{-}\eta$ $(\overline{K}3\pi)^{-}$ (estimated)	0.27 ± 0.06 0.74 ± 0.30					
	$K_1(1270) \longrightarrow K \ \omega$ $(\overline{K}4\pi)^-$ (estimated) and $K^{*-}\eta$	0.67 ± 0.21 0.40 ± 0.12					
	Sum	29.69 ± 0.86	Updated	l Estimate: 28	8.44±0.74	$[28.78 \pm 0.71]$	
Smaller τ→K	branching ratios		SI	naller I	$R_{ au,S}$	\rightarrow	smaller V _{us}
$\left. R_{\tau,S}^{00} \right _{OUT}$	= 0.1686 (47) -	\rightarrow	$R_{ au,S}^{00}$			15 (40)
TOLL	,						
$\iota_{s} _{OLD} = 0.221$	$2 \pm 0.0031_{exp} \pm 0.00$	005 _{th}		$\left V_{us}\right _{\text{NEW}}$, = 0.21	165 ± 0.00	$26_{exp} \pm 0.0005_{th}$

Much more data coming. Precise measurement expected soon

A simultaneous $m_s \& V_{us}$ fit could be possible However:

Perturbative QCD corrections need to be better understood (CIPT)

$$\begin{split} &\Delta_{00}(\alpha_{\rm s})^{\rm L+T} = 0.753 \pm 0.214 \pm 0.065 \pm 0.063 \pm \dots \\ &\Delta_{10}(\alpha_{\rm s})^{\rm L+T} = 0.912 \pm 0.334 \pm 0.192 \pm 0.069 \pm \dots \\ &\Delta_{20}(\alpha_{\rm s})^{\rm L+T} = 1.055 \pm 0.451 \pm 0.330 \pm 0.232 \pm \dots \\ &\Delta_{30}(\alpha_{\rm s})^{\rm L+T} = 1.190 \pm 0.571 \pm 0.484 \pm 0.432 \pm \dots \\ &\Delta_{40}(\alpha_{\rm s})^{\rm L+T} = 1.324 \pm 0.697 \pm 0.657 \pm 0.676 \pm \dots \end{split}$$

Sizeable theoretical uncertainties

Resummations, pinched weights (Maltman & Wolfe), ...

Not enough sensitivity with present data

Large correlations. Low statistics. Missing decay modes ...

Recent Fit to ALEPH Spectrum (Br's re-scaled)

(Maltman et al.)

Pinched weights ro reduce perturbative QCD corrections

- **Similar results:** $|V_{us}| = (0.2144 0.2156) \pm 0.0031_{exp} \pm 0.0022_{th}$
- □ Total decay rare $R_{\tau,S}^{00} = 0.1615$ (40) not used (weighted spectrum only)

Larger Uncertainties

New Data Needed

$$V_{\text{us}}$$
 from τ decays

Huge number of $\tau^+\tau^-$ events at the B Factories Br $(\tau^- \rightarrow K_S \pi^- \nu_{\tau}) = (0.404 \pm 0.002_{stat} \pm 0.013_{syst}) \%$

Ongoing data analysis

$R\chi T$ Description of BELLE data

Shape fit:

 $M_{K^{\star}} = 895.3 \pm 0.2 \text{ MeV}$

 $\Gamma_{K^*} = 47.5 \pm 0.4$ MeV

R_χT normalization fixed \blacksquare Br(τ - \rightarrow K_Sπ

Br $(\tau^- \rightarrow K_S \pi^- \nu_{\tau})_{th} = (0.427 \pm 0.024) \%$

 $Br(\tau^- \to K_S \pi^- \nu_{\tau})_{Belle} = (0.404 \pm 0.002_{stat} \pm 0.013_{syst}) \%$

 Prediction for K₁₃ Form Factor Slopes:

 $\dot{\lambda}_{+} = (25.20 \pm 0.33) 10^{-3}$;
 $\dot{\lambda}_{+}^{"} = (12.85 \pm 0.31) 10^{-4}$;
 $\dot{\lambda}_{+}^{""} = (9.56 \pm 0.28) 10^{-5}$

 EXP: (Flavianet Kaon WG)
 $\dot{\lambda}_{+} = (25.2 \pm 0.9) 10^{-3}$;
 $\dot{\lambda}_{+}^{"} = (16 \pm 4) 10^{-4}$

 Vus from τ decays
 A. Pich - CKM2008

SUMMARY

The τ could give the most precise V_{us} determination

• From present τ data one gets:

$$V_{us} = 0.2165 \pm 0.0026_{exp} \pm 0.0005_{th}$$

Accuracy similar already to K₁₃:

 $|V_{us}| = 0.2233 \pm 0.0024$ $[f_+(0) = 0.97 \pm 0.01]$

Interesting challenge for the B Factories & BESIII

 V_{us} from τ decays

arXiv:0801.1817 [hep-ph]

 $|f_+(0)V_{us}| = 0.2166 \pm 0.0005$

$f_+(0) = 0.97 \pm 0.01$

 V_{us} from τ decays

A. Pich - CKM2008

 $f_{+}^{K^{0}\pi^{+}}(0)$ Leutwyler & Roos 84 0.961(8) Quark M. N.Q $\chi PT+LECs$ -0.971(9) $\gamma PT + LR$ Bijnens & Talavera Jamin et al 0.974(11) $\gamma PT + disp.$ 0.984(12) YPT Cirigliano et al N_f=0 SPQcdR 0.960(5)(7) Wilson $N_f=2$ RBC 0.968(9)(6) DWF CP-PACS Q. LATTICI 0.967(6)CP-PACS YPT 0.952(6)Wilson 0.9647(15)_{stat} QCDSF* $N_{c}=2+1$ 0.962(11) Staggered HPQCD-FNAL 0.9644(49) **DWF** RBC-UKQCD 07 0.94 0.95 0.96 0.97 0.98 0.99 1.00

K_{I3} Decays

Large O(p⁶) ChPT correction (Bijnens-Talavera)

O(p⁴)

O(p⁶)

Davier-Höcker-Zhang '05

Taking $V_{us} = 0.2225 (21)$:

V_{us}

ALEPH

Chen et al '01, J=0 included

(1, 1)		$\sigma_{m_s}~({ m MeV})$						
(κ, ι)	m_s (MeV)	exp.	$ V_{us} $	α_s	$\langle m_s \bar{s}s \rangle$	trunc.	R-scale	th.
(0,0)	132	26	13	2	4	9	9	14
$(1,\!0)$	120	13	9	3	4	10	11	16
(2,0)	117	10	7	3	6	14	14	21
(3,0)	117	9	8	2	8	19	16	27
(4,0)	103	7	5	3	9	20	19	29

 $m_s(m_\tau) = (120^{+21}_{-26}) \,\mathrm{MeV}$

$$m_s(2\,{\rm GeV}) = (116^{+20}_{-25})\,{\rm MeV}$$

 V_{us} from τ decays

Gámiz et al '03 , J=0 excluded

Moment	$m_s(m_{\tau})$ [MeV]	
(0,0)	192 ± 72	
(1,0)	164 ± 31	
(2,0)	137 ± 20	
(3,0) 115 ± 17		
(4,0)	100 ± 17	
$m_s(m_{\tau}) = (122 \pm 17) \text{ MeV}$		

 $m_s(2\,{\rm GeV}) = (117\pm17)\,{\rm MeV}$

□ Strong k dependence with ALEPH data (m_s decreases with increasing k) Spectral function underestimated at large invariant masses Missing events / modes (Kππ, Kπππ, ...)

■ Much better behaviour with OPAL data: (0,0) → $V_{us} = 0.2208 (34)$ → Gámiz et al '05, J=0 excluded $Moment m_s(m_\tau) [MeV]$ (2,0) 89±39 (3,0) 84±27 (4,0) 78±22 $m_s(m_\tau) = (84\pm23) \text{ MeV}$, $m_s(2 \text{ GeV}) = (81\pm22) \text{ MeV}$

 \Box $\tau \rightarrow K\nu$ from $K \rightarrow \mu\nu + OPAL$:

 $V_{us} = 0.2220$ (33)