Theoretical Methods

Christian Bauer LBNL/UC Berkeley CKM 2008, Rome

Christian Bauer

Factorization Theorems

We measure a combination of short distance EW physics and long distance hadronization effects

$$\left\langle \mathbf{B} \right|_{\frac{b}{b}} \left\langle \mathcal{B} \right\rangle$$

Factorization theorems separate short distance from long-distance physics

Long distance physics has to be isolated into a few measurable parameters, such that EW physics can be determined from measured data

Christian Bauer

Outline

The different scales in non-leptonic B decays
A quick introduction to SCET
Factorization theorems from scale separation
What are the implications the?
What are the differences between different approaches?

The different scales in the problem

Christian Bauer

The different scales

m_W, m_z, ... Electroweak physics we are after

Short distance, perturbative

$(\Lambda_{QCD} m_b)^{1/2}$ Scale arising dynamically

Long distance, nonperturbative

Christian Bauer

Scales m_w, m_z

Mediates the Flavor processes in the SM

Scales m_w, m_z

Mediates the Flavor processes in the SM

Christian Bauer

Scales mw, mz

Mediates the Flavor processes in the SM

Christian Bauer

Scale mb, EM

Describes short distance QCD effects

Christian Bauer

Scale mb, EM

Describes short distance QCD effects

Christian Bauer

Scale mb, EM

Describes short distance QCD effects

Christian Bauer

Scale $(\Lambda_{QCD}m_b)^{1/2}$

Arises from turning soft spectator in B meson into collinear spectator in light meson

Scale $(\Lambda_{QCD}m_b)^{1/2}$

Arises from turning soft spectator in B meson into collinear spectator in light meson

 $p^2 \sim \Lambda_{QCD} m_b$

Scale $(\Lambda_{QCD}m_b)^{1/2}$

Arises from turning soft spectator in B meson into collinear spectator in light meson

Christian Bauer

Scale AQCD

The final hadronization of the partons into hadrons

Scale Λ_{QCD}

The final hadronization of the partons into hadrons

Quick introduction to SCET

Field content of SCET

Differentiate collinear and soft DOF

Туре	Momentum	Fields
collinear	$E >> \Lambda_{QCD}$	χn, An
soft	$E \sim \Lambda_{QCD}$	qs, As

Need a different collinear field for each direction

Christian Bauer

Leading order collinear Lagrangian

$$\mathcal{L} = \sum_{n} \bar{\chi}_{n} \left[in \cdot D_{n} + gn \cdot A_{s} + i \mathcal{D}_{n}^{\perp} \frac{1}{i\bar{n} \cdot D_{n}} i \mathcal{D}_{n}^{\perp} \right] \frac{\vec{n}}{2} \chi_{n}$$

Leading order collinear Lagrangian

$$\mathcal{L} = \sum_{n} \bar{\chi}_{n} \left[in \cdot D_{n} + gn \cdot A_{s} + i \mathcal{D}_{n}^{\perp} \frac{1}{i\bar{n} \cdot D_{n}} i \mathcal{D}_{n}^{\perp} \right] \frac{\bar{\eta}}{2} \chi_{n}$$

Collinear fields

Christian Bauer

Leading order collinear Lagrangian

$$\mathcal{L} = \sum_{n} \bar{\chi}_{n} \left[in \cdot D_{n} + gn \cdot A_{s} + i \mathcal{D}_{n}^{\perp} \frac{1}{i\bar{n} \cdot D_{n}} i \mathcal{D}_{n}^{\perp} \right] \frac{\bar{\eta}}{2} \chi_{n}$$

Collinear fields

Soft gluon

Leading order collinear Lagrangian

$$\mathcal{L} = \sum_{n} \bar{\chi}_{n} \left[in \cdot D_{n} + gn \cdot A_{s} + i \mathcal{D}_{n}^{\perp} \frac{1}{i\bar{n} \cdot D_{n}} i \mathcal{D}_{n}^{\perp} \right] \frac{\bar{\eta}}{2} \chi_{n}$$

Collinear fields Soft gluon

No interactions between collinear fields of different directions

Interaction between collinear and soft fields only via one single term

Christian Bauer

$$\mathcal{L} = \sum_{n} \bar{\chi}_{n} \left[in \cdot D_{n} + gn \cdot A_{s} + i \mathcal{D}_{n}^{\perp} \frac{1}{i\bar{n} \cdot D_{n}} i \mathcal{D}_{n}^{\perp} \right] \frac{\vec{\eta}}{2} \chi_{n}$$

Christian Bauer

$$\mathcal{L} = \sum_{n} \bar{\chi}_{n} \left[in \cdot D_{n} + gn \cdot A_{s} + i \mathcal{D}_{n}^{\perp} \frac{1}{i\bar{n} \cdot D_{n}} i \mathcal{D}_{n}^{\perp} \right] \frac{\bar{\eta}}{2} \chi_{n}$$

Perform field redefinition

$$\chi_n = Y_n \chi_n^{(0)} \quad A_n = Y_n A_n^{(0)} Y_n^{\dagger}$$
$$Y_n = \operatorname{Pexp}\left[ig \int_0^\infty ds \ n \cdot A_s(ns)\right]$$

$$Y_nY_n^{\dagger}=1$$
 in $DY_n = Y_n in \partial$

$$\mathcal{L} = \sum_{n} \bar{\chi}_{n}^{(0)} \left[in \cdot D_{n} + i \mathcal{D}_{n}^{\perp} \frac{1}{i\bar{n} \cdot D_{n}} i \mathcal{D}_{n}^{\perp} \right] \frac{\bar{\eta}}{2} \chi_{n}^{(0)}$$

Perform field redefinition

$$\chi_n = Y_n \chi_n^{(0)} \quad A_n = Y_n A_n^{(0)} Y_n^{\dagger}$$
$$Y_n = \operatorname{Pexp}\left[ig \int_0^\infty ds \ n \cdot A_s(ns)\right]$$

$$Y_nY_n^{\dagger}=1$$
 in $DY_n = Y_n in \partial$

 $\mathcal{L} = \sum \bar{\chi}_n^{(0)} \left| in \cdot D_n + i \mathcal{D}_n^{\perp} \frac{1}{i\bar{n} \cdot D_n} i \mathcal{D}_n^{\perp} \right| \frac{\bar{\eta}}{2} \chi_n^{(0)}$ n

Christian Bauer

 $\mathcal{L} = \sum \bar{\chi}_n^{(0)} \left| in \cdot D_n + i \mathcal{D}_n^{\perp} \frac{1}{i\bar{n} \cdot D_n} i \mathcal{D}_n^{\perp} \right| \frac{\eta}{2} \chi_n^{(0)}$ n

Only true at leading order in Λ_{QCD}/E

Factorization from scale separation

Christian Bauer

Matching onto SCET

All approaches remove scales m_W and m_b by matching onto SCET (even though might not use these words)

Soft Wilson lines between particles in same direction cancels

$$\frac{1}{\sqrt{1}} = Y^{\dagger}Y = 1$$

Immediately find separation of one meson from rest of process

Christian Bauer

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

No expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

No expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

$A = H \otimes \zeta_{BM} \otimes \Phi_{M}$

Christian Bauer

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

No expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

Christian Bauer

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

No expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

$A = H \otimes \zeta_{BM} \otimes \Phi_{M}$

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

No expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

$A = H \otimes \zeta_{BM} \otimes \phi_{M}$

Christian Bauer

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

With expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

With expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

$A = H \otimes \Phi_{B} \otimes \Phi_{M} \otimes \Phi_{M}$

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

With expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

$A = H \otimes \Phi_{B} \otimes \Phi_{M} \otimes \Phi_{M}$

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

With expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

$A = H \otimes \Phi_{B} \otimes \Phi_{M} \otimes \Phi_{M}$

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

With expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

$A = H \otimes \Phi_{B} \otimes \Phi_{M} \otimes \Phi_{M}$

Uses that at Lagrangian level different fields in SCET completely decouple at leading order in Λ_{QCD}/E

With expansion in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$

$A = H \otimes \Phi_B \otimes \Phi_M \otimes \Phi_M$

Do we trust the method?

SCET agrees with decades of accumulated knowledge on collider physics phenomenology

Same effective theory and same manipulations reproduce known factorization theorems in collider physics

Solving RG equations of SCET reproduces resumation of known logarithms in DIS, DY and Higgs production

SCET at leading order reproduces the parton shower

Do we trust the method?

SCET agrees with decades of accumulated knowledge on collider physics phenomenology

Same effective theory and same manipulations reproduce known factorization theorems in collider physics

Solving RG equations of SCET reproduces resumation of known logarithms in DIS, DY and Higgs production

SCET at leading order reproduces the parton shower

We do know that SCET reproduces the long distance physics of QCD reliably

Main question is how well leading order works, or how large Λ_{QCD}/E power corrections are

One subtlety...

Intermediate charm loop

One subtlety... Intermediate charm loop

One subtlety... Intermediate charm loop

Does this lead to local, perturbative effect, or can cc-pair travel a large distance, creating new nonperturbative effect?

 $\alpha_s(\mathbf{r})$

 $\alpha_s(Q^2)$

Christian Bauer

What are the implications?

Strong phases

$A = H \otimes \zeta_{BM} \otimes \Phi_M + A_{cc}$

 ζ_{BM} and Φ_M both real \Rightarrow strong phases only from H and A_{cc}

At least if A_{cc} does not contribute, strong phases suppressed by $\alpha_s(m_b)$ or Λ_{QCD}/E

Christian Bauer

Even if don't expand in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$ and don't assume anything for A_{cc} , very few hadronic parameters

	no expns	SU(2)	SU(3)	SCET +SU(2)	SCET +SU(3)
ΠΠ	11	7/5	15/13	4	
Кπ	15	11	15/15	+5(6)	4
KK	11	11	+4/+0	+3(4)	

Even if don't expand in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$ and don't assume anything for A_{cc} , very few hadronic parameters

	no expns	SU(2)	SU(3)	SCET +SU(2)	SCET +SU(3)
ΠΠ	11	7/5	15/13	4	
Кπ	15	11	15/15	+5(6)	4
KK	11	11	+4/+0	+3(4)	

One important prediction: $A_{CP}^{K^{+}\pi^{0}} < A_{CP}^{K^{+}\pi^{-}}$

Even if don't expand in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$ and don't assume anything for A_{cc} , very few hadronic parameters

	no expns	SU(2)	SU(3)	SCET +SU(2)	SCET +SU(3)
ΠΠ	11	7/5	15/13	4	
Кπ	15	11	15/15	+5(6)	4
KK	11	11	+4/+0	+3(4)	

One important prediction: $A^{K^{+}\pi^{0}}_{CP} < A^{K^{+}\pi^{-}}_{CP}$

Data $A_{CP}^{K^{+}\pi^{0}} = 0.050 \pm 0.025$ $A_{CP}^{K^{+}\pi^{-}} = -0.097 \pm 0.012$

Even if don't expand in $\alpha_s(\sqrt{\Lambda_{QCD}m_b})$ and don't assume anything for A_{cc} , very few hadronic parameters

	no expns	SU(2)	SU(3)	SCET +SU(2)	SCET +SU(3)
ΠΠ	11	7/5	15/13	4	
Кπ	15	11	15/15	+5(6)	4
KK	11	11	+4/+0	+3(4)	

One importantDataprediction: $A_{CP}^{K^+\pi^0} = 0.050 \pm 0.025$ $A_{CP}^{K^+\pi^0} < A_{CP}^{K^+\pi^-}$ $A_{CP}^{K^+\pi^-} = -0.097 \pm 0.012$

Large power corrections or new physics?

Differences between different approaches?

PT at $\alpha_s(1.3 \text{GeV})$?

All approaches use PT at hard scale $\mu_h \sim m_b$

Not all use PT at intermediate scale $\mu_h \sim \sqrt{\Lambda_{QCD}E}$)

BPRS	QCDF	PQCD	
No PT at	PT at intermediate	PT at intermediate	
intermediate scale	scale	scale	

While using PT does lead to more universality, for nonleptonic B decays get predictive power without

Endpoint divergences

PT at intermediate scale gives rise to divergent convolutions with meson wave functions

How do we regulate these singularities?

BPRS	QCDF	PQCD
No singularities since no PT at intermediate scale	New hadronic parameters for singular convolutions	Singularities regulated with "unphysical" k _T

Charm Loops

As we have seen, cc pair in charm loop can potentially generate new non-perturbative (complex) matrix element, introducing non-perturbative strong phases

Disagreement if PT can be used or not

BPRS	QCDF	PQCD	
Treat charm loop as	Use PT for charm	Use PT for charm	
non-perurbative	loops	loops	

Comparison

	BPRS	QCDF	PQCD
Expansion in α _s (μ _i)?	No	Yes	Yes
Singular convolutions	N/A	New parameters	"Unphyiscal" k _T
Charm Loop?	Non- perturbative	Perturbative	Perturbative
Number of parameters	Most	Middle	Least
How conservative?	Most	Middle	Least

Christian Bauer

Conclusions

Need factorization theorems to disentangle EW physics from hadronization effects

Scale separation using effective theories has given theoretical handle

Theoretical concept is quite well tested in other processes
Factorization is established at leading order in Λ_{QCD}/E
How small are power correction?
Of different approaches, BPRS most conservative, but has more hadronic parameters than QCDF or PQCD

