

Temp test

Luigi Longo Università del Salento Dipartimento di Matematica e Fisica "Ennio De Giorgi" and Istituto Nazionale di Fisica Nucleare - Sezione di Lecce

Temperature Test: Experimental Setup

MEASUREMENTS DONE @ RD51 Gas Distribution Setup Chambers considered: T1, T2 and T5 Gas (Ar:CO₂) \equiv (93,7) HV: **Necessary to** 520V for the resistive strips equalize the flux 300V for the drift panel for each Inpedances-Radiactive sources: chamber Box Fe55 Flux: TH2 **T5** 1I/h for T1,T2,T5 Fan not used thermoelectric strip-device connected to a potentiometer **T5**: Pt100 Resistivity of 5-10 MOhm/cm Irradiated @ GIF++ T1: Resistivity of 20-30 Mohm/cm Not Irradiated @ GIF++

Temperature Test: Data taking procedure

- Three heating and cooling cycles for T1 and T5:
 - 1st cycle:
 - Sparks rate measured for both the chambers while the temperature (T) increases (RISE PHASE1) or decreases (DROP PHASE1) [T5 on top]
 - 2nd cycle:
 - > Sparks rate measured for both the chambers while the temperature increases (**RISE PHASE2**) or decreases (**DROP PHASE2**)
 - Iron 55 spectrum measured using T5 chambers as function of the temperature [T5 on top]
 - 3rd cycle:
 - Sparks rate measured for both the chambers while the temperature increases (RISE PHASE3), is stable (PLATEAU PHASE3) or decreases (DROP PHASE3)
 - Iron 55 spectrum measured using T1 chambers during RISE PAHSE3 and DROP PAHSE3 [T1 on top]

Temperature Test: 1st cycle - RISE PHASE1

Remark: T1 at the bottom of the box → T1 should be at lower temperature wrt T5

Temperature Test: 1st cycle - RISE PHASE1

Temperature Test: 1st cycle - DROP PHASE1

Chambers kept at high temperature for more or less 12 h before the DROP PHASE1

Temperature Test: 2st cycle – RISE PHASE2

55Fe on top of T5

Temperature Test: 2st cycle - Spikes RISE PHASE2 plots

T5-2nd Cycle

Temperature Test: 2st cycle - RISE PHASE2 Gain Vs Temp

- Iron55 spectrum measured in a 120s window
- Considered the RH, T_{box}, T_{gas} avarage for the 120s
- Gaussian Fit performed on each Iron55 spectrum

Temperature Test:2nd cycle - DROP PHASE2

It seems that there is no hysteresis effect if one concentrates only on 2nd cycle

BUT

BEHAVIOUR DIFFERENT FROM 1ST CYCLE

!!! T1: too few sparks to see a trend

Temperature Test: 2st cycle - DROP PHASE2 Gain Vs Temp

!!! For the DROP and RISE phase the gain increases in a quite linear way BUT
THE 2 CURVES ARE NOT OVERLAPPED → HYSTERESIS EFFECT??

Temperature Test: 3st cycle

Remarks:

- T1 on top of T5
- Iron55 spectrum measured from T1

!!! One should assume that in the previous cycles T1 was at lower temperature wrt T5

Temperature Test: 3st cycle - RISE PHASE3

Temperature Test: 3st cycle - RISE PHASE3 Gain Vs Temp

Temperature Test: 3st cycle - PLATEAU PHASE3

Temperature Test: 3st cycle - PLATEAU PHASE3

Same T in these regions but the spark amplitude is higher in the second period wrt the previous one

Temperature Test: 3st cycle - PLATEAU PHASE3

Remarks:

Resolution of 1 s

It seems to there be a CORRELATION BETWEEN T1 AND T5 RATE BUT

it could be related to the fact that there is a BAD RESOLUTION

Temperature Test: 3nd cycle – DROP PHASE3 Gain Vs Temp

Temperature Test: 3st cycle - Gain Vs Temp

!!! For the DROP and RISE phase the gain increases in a quite linear way
BUT
THE 2 CURVES ARE NOT OVERLAPPED AT HIGH & LOW T

Temperature Test: Conclusion

- Sparks increase with temperature
- Some **hysteresis effects** are present
- ♠ A safe operation under 30°C

- Next step:
 - Repeat the measurements increasing only gas or chamber temperature
 - Since the measurement takes a lot of time, next time the atmospheric pressure will be taken into account.

Temperature Test

Backup

Temperature Test: Tgas-TBox 1st Cycle

Temperature Test: Tgas-TBox 1st Cycle

Temperature Test: Tgas-TBox 2st Cycle

Temperature Test: Tgas-TBox 2st Cycle

Temperature Test: Tgas-TBox 2st Cycle

