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Plasma beams properties

Plasma structures (waves) are small:

typical scales are from few tens to few hundreds
of microns, depending on plasma density (and
wave regime) through
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Plasma fields are very intense:

typical values may vary in the range of few to a
thousand GV/m
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Plasma beams properties

High energy spread

&
High divergence and tight

focusing
... within the plasma channel
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Plasma beams properties

High energy spread

&
High divergence and tight

focusing
... within the plasma channel

If the bunch was monochromatic, high
divergence and tight focusing would not be
(at least in principle) a problem:

Proper matching of the beam at the
(vacuum-)plasma-vacuum interface(s)
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Plasma beams properties

Since it's not, we must be prepared to face
the effects of

CHR MATISM
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Highly chromatic beam transport:
RF acceleration vs plasma acceleration

2 2 2 2 2 2
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drifting in vacuum

EXAMPLE: RF gun
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Highly chromatic beam transport: a closer look
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Highly chromatic beam transport: a closer look

Self-injection beam
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Highly chromatic beam transport: a closer look

Self-injection beam
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Highly chromatic beam transport: some bibliography

@ K. Floettmann, Some basic features of beam emittance, Phys. Rev. STAB 6,
034202 (2003).

@ T. Mehrling et al., Transverse growth in staged-wakefield acceleration, Phys.
Rev. STAB 15, 111303 (2012).

@ P. Antici et al., Laser-driven electron beamlines generated by coupling laser-
plasma sources with conventional transport systems, J. App. Phys. 112, 044902
(2012).

@ M. Migliorati et al., Intrinsic normalized emittance growth in laser-driven electron
accelerators, Phys. Rev. STAB 16, 011302 (2013).
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Plasma beams manipulation
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Plasma beams manipulations...

@ Control initial beam parameters at injection, for internal injection
schemes.

@ Eventually reduce beam length, for external injection / staging.

@ Inject beams into plasma with the correct size, to avoid emittance
dilution in subsequent acceleration, for external injection / staging.

@ Extract beams from plasma realizing a trade-off between size and
divergence at constant emittance (adiabatic matching), to avoid
propagating highly divergent beams.

@ Control energy spread, keeping it as low as possible to avoid

chromaticity induced emittance dilution.
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Injection
@ Self-injection. @ |onization injection.
@ Optical injection. @ Field ionization.
@ Density gradient injection. @ External injection™.

electron
pulse

* C.E. Clayton and L. Serafini, IEEE Trans. Plas. Sci. 24, 400 (1996)
N.E. Andreev, S.V. Kuznetsoy, Plas. Phys. Contr. Fus. 45, 39 (2003)
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Self-injection

Relays on wave breaking due to large amplitude fields, plasma wavefronts distortion, forward
Raman scattering’ and other non linear phenomena: very poor control on injected bunches.
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High charge bunches, “easy” to implement. Many experimental results.

[1] Modena, A., Z. Ngimudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Maka, C. B. Darrow, C. Danson, D. Nedy, and F. N. Walsh, 1995,
Nature London 377, 606.
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Optical injection: ponderomotive injection and
colliding pulses

Two high intensity laser pulses’ or three resonant lower energy laser pulses® one pulse is
the “pump” and drives the plasma wakefield; the others “push” background electrons into the
accelerating bucket. Different blends but usually requires a complex experimental setup and
a high degree of precision in space and time.

| Ny =1.25x101% cm3
o8k
0.6F

DAF 200 100 50 25
02

s ;_ I_|' h I #I %\l‘l
0.0k DA e
- I i ¥ i

Nk '.-:_'-. X |_ i i | _

Angle (mrad)

n,=75x10%cm=

-':}——'l. o _..l

ny =75 <108 cm

n.=75x10%cm=

Electron bunch

400 200 100 50
\ \ \ Energy (MeV)
L e T
500 1,000 5,000

Number of counts

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka,
Nature 444, 737 (2006).

[1] D. Unstadter, J . K. Kim, and E. Dodd, 1996, Phys. Rev. Léeit. 76, 2073.
[2] E. Esarey, A. Ting, R. F. Hubbard, W. P. Leemans, | . Krall, and P. Sprangle, Phys. Rev. Lett. 79, 2682 (1997).
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Optical mjection: cold mnjection

The driver laser pulse collides head on with a low intensity injection laser. The bubble is
temporarily deformed and a high charge bunch of “cold” electrons is injected when the

bubble goes back to its original shape”.
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[1] R. Lehe A. F. Lifschitz, X. Davoine, C. Thaury, and V. Maka, Phys. Rev. Lett. 1, 085005 (2013)
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Density gradient injection

A decreasing plasma density’ causes the plasma wavelength to increase so that background
electrons are enclosed in the larger bubble.
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[1] Bulanov, S., N. Naumova, F. Pegoraro, and ] . Sakai, 1998, Phys. Rev. E 58, R5257.
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Injection by 1onization/1

The plasma is composed by a mixture of gases, with different ionization energies. One is
ionized by the wave driver and forms the plasma wave, the other is ionized either by the
plasma field" or by an injection laser and the ionized electrons form the injected bunch. In
LWFA this last technique takes the name of ionization injection®.
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Pollock et al., Phys. Rev. Lett. 107, 045001
(2011).

[11A. Martinez delaOssa, J . Grebenyuk, T. Mehrling, L. Schaper, and ) . Osterhoff, Phys. Rev. Lett. 41, 245003 (2013).
[2] E. Oz, et d., Phys. Rev. Lett. 98, 084801 (2007).
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Injection by 1onization/2

In PWFA, ionization injection is named Trojan Horse'. A rather new mechanism, injection by
plasma torch?, is between ionization injection and density gradient.

a) 10

focussing
laser

[1] B. Hidding, G. Pretzler, ] . B. Rosenzweig, T. Konigstein, D. Schiller, and D. L. Bruhwiler, Phys. Rev. Lett. 108, 035001 (2012).
[2] G. Wittig, etal., Nuc. Inst. Meth. Phys. Res. A, http://dx.doi.org/10.1016/j.nima.2016.02.027 (in press).
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Acceleration
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Plasma density and maximum energy
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Linear
Plasma wave regime ., Bubble
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charges up to few tens of pC.
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implementation. However, it's
the least manageable, due to
high sensitivity to jitters.
Extremely intense fields for top
performances; beam loading is
usually not a problem up to few
hundreds of pC.
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Beam loading

Beam loading is the perturbation Longitudinal field
to the plasma fields due to the 2.0
witness bunch self-fields. !
Generally speaking: i
1.01L ek
@ Modifies the total fields acting deceleratin "é"'ﬂ'q"
on the witness. 05 |
|
i

@ May reduce acceleration
performances.

3 |
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H
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energy spread.

@ Depends on witness current. ) /
@ |ts effects depend on the 0oL |
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also on plasma wave regime. :
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Transverse manipulations and matching
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Matching into plasma

It's easy to find matching conditions for bubble regime with negligible beam loading:

Ttr,match —

Typical values are in the order of 0.1 — 1 um.

For a quasi-linear plasma wave regime matched spot-sizes have the same order of
magnitude. If the plasma driver transverse size is always much larger than the beam
size, transverse fields can be considered linear, although they depend on (.

In linear regime the same considerations on the nature of transverse fields hold
true, but beam loading is usually not negligible, unless charge is very low.
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Matching into plasma

It's easy to find matching conditions for bubble regime with negligible beam loading:

J2 [en
Ttr,match — — ;L—
/ P

Typical values are in the order of 0.1 — 1 um.

For a quasi-linear plasma wave regime matched spot-sizes have the same order of
magnitude. If the plasma driver transverse size is always much larger than the beam
size, transverse fields can be considered linear, although they depend on (.

In linear regime the same considerations on the nature of transverse fields hold
true, but beam loading is usually not negligible, unless charge is very low.

Tight focusing Is needed
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Matching into/out of plasma/l

More conventional solutions: high performance beam optics like permanent magnet
quadrupoles...

...reaching many hundreds of T/m gradients, adequate for energies up to few
hundreds MeV.

Andrea R. Rossi B taiy, )My 17-23 2016
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Matching into/out of plasma/2

Plasma lenses: classification

Integrated Ramps ---

ay 17-23 2016
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Stand alone, active plasma lens: discharge capillary’

The beam goes through a capillary filled with gas, while a current is flowing in the capillary. If

some (rather restrictive) conditions are met, the bunch is focused by the azimuthal magnetic
field generated by the current density.

(a) Favourable scaling Linear focusing field
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/s T 5) o 0.5
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[1]). vanTilborg, etal, Phys. Rev. Lett. 115, 184802 (2015)  Effective only as a thin lens
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Stand alone, active plasma lens: gas jet’

A gas jet, acting as plasma lens, is powered by an ad hoc laser pulse.

f | Density profile
s 6 4
3} 0 =Y ny forz <0 (First jet)
E;:, 4 . nlz) =40 TorQO<z< iy (Drift space)
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0 —40 o
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Linear, intense focusing
_ .05 B
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* this relation was derived assuming a constant
emittance during drift.

Requires two high power lasers to be operated.

[1] R. Lehe, C. Thaury, E. Guillaume, A. Lifschitz, and V. Malka, Phys. Rev. STAB 17, 121301 (2014)
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Stand alone, passive plasma lens: gas jet'

A gas jet, acting as plasma lens, is powered by the same laser extracting and accelerating the
bunch

Density profile
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[1]R. Lehe, C. Thaury, E. Guillaume, A. Lifschitz, and V. Malka, Phys. Rev. STAB 17, 121301 (2014)
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Stand alone, passive plasma lens: gas jet'’

A gas jet, acting as plasma lens, is powered by the same laser extracting and accelerating the

bunch
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Integrated, passive plasma lens: plasma ramps

A tapering at the end (beginning) of the plasma channel acts as a plasma lens and defocuses
(focuses) the bunch performing matching. Moreover, the focusing (defocusing) of the driver
helps in performing the process.

Emittance dilution as a function of initial Twiss Scan € f vs ramp length L cSncc?n/era=m1p scale | vs ramp length
parameters, average B in focusing element and 1 b sat i2
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X. L. Xu, etd., arXiv: 1411.4386v2 [physics.acc-ph] 2015

Andrea R. Rossi Trends in Free Electron Laser Physics, Erice; Italy, May 17-23 2016



A review of plasma based beamline elements for advanced beam manipulation

Integrated, passive plasma lens: plasma ramps &
driver focusing/defocusing

A tapering at the end (beginning) of the plasma channel acts as a plasma lens and defocuses

(focuses) the bunch performing matching. Moreover, the focusing (defocusing) of the driver
helps in performing the process.

Emittance conservation and Tolerance to beam position
adiabatic focusing/defocusing jitters
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|. Dommair, K. Flogttmann, and A. R. Maier, Phys. Rev. STAB 18, 041302 (2015)
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A review of plasma based beamline elements for advanced beam manipulation

Integrated, passive plasma lens: plaSma ramps &
tailored driver focusing/defocusing in hollow capillary

A tapering at the end (beginning) of the plasma channel acts as a plasma lens and defocuses
(focuses) the bunch performing matching. Moreover, the focusing (defocusing) of the driver is

tailored to help in performing the process. Stability vs injected beam parameters jitters

Plasma
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P. Tomessini and A.R. Rossi, Plas, Phys. Cont. Fus. 58, 034001 (2016).  Z[«mI Z [
A.R.Rossi, et al., Nuc. Met. Phys. Res. A, http://dx.doi.org/10.1016/j.nima.2016.02.015 (in press)
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A review of plasma based beamline elements for advanced beam manipulation

Integrated, passive plasma lens: plasma ramps &
tailored driver focusing/defocusing

In the raps the regime is linear with dominating beam loading. This working condition allows a

beam loading assisted matching. In the acceleration section the regime is quasi-linear and the
beam loading negligible.

EI_ W i % | RSis,-smumas0 P T RS0y =53 m. =0 |"25

Capillary tips shaping (splay) can be a way to modulate both
laser convergence (divergence) and plasma ramping.

Also, the number, position and feeding pressure of the gas inlets may
improve control over plasma tapering

10 20 30 40 50 60 70
Z [um]

P. Tomessini and A.R.Rosst Needs to be confirmed by PIC simulations

A.R.Rossi, et d., Nuc. Met
e e seitaky, )2y 17-23 2016
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A review of plasma based beamline elements for advanced beam manipulation

Matching into/out of plasma: 1s 1t really necessary?
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Matching into/out of plasma: 1s 1t really necessary?
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Longitudinal manipulations
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A review of plasma based beamline elements for advanced beam manipulation

Longitudinal compression

Longitudinal compression is possible when a bunch has an energy much lower than the
resonant one, i.e. when the witness is (initially) much slower than the plasma wake', by velocity

bunching?.
: = Linear regime
e I S T MV - No beam loading
26 ] 250

i i I L]

! | ] .
= 20 - R S ~ 200 Further readings:
&, t i | 1

[ | ) _ ]
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: Nl ' L = Plas. Phys. Rep. 27, 372 (2001).
T . P ' ] 3 « N.E. Andreev and S.V. Kuznetsov,
8 10 fo T i 1100 S Plas. Phys. Cont. Fus. 45, A39 (2003)
E [ [ [ _ ] « S.V. Kuznetsov, Plas. Phys. Rep. 32,
3 . 7 [ S~ _ __ ] 282 (2006).
Y B o e~ | 50 « N.E. Andreev, et al., Nuc. Inst. Meth.

' e — Phys. Res. A 653, 66 (2011).
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M. Ferrario, T. C. Katsouleas, L. Serafini, and llan Ben Zvi, IEEE Trans. Plas. Sci. 28, (2000).

[1] J.L. Bobin, in Proc. of the ECFA-CAS/CEFN-In-2P3-IRF/CEA-EPS Workshop, p. 58 (1987). C.S. Liu and V.K. Tripathi, Interaction of
€lectromagnetic waves with electron beams and plasmas, World Scientific, Singapore, 1994.
[2] L. Serafini and M. Ferario, LNF-00/036, 2000. L. Serafini and M. Ferrario, AIP Conf. Proc. 581, 87 (2001).
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Andrea R. Rossi

Energy spread control by beam loading

One way to limit energy spread in plasma is to “flatten out” the longitudinal field along the bunch

by properly tailoring the beam loading.
Optimal beam profile for non-linear reaime

Optimal beam profile for linear regime 2 ph, R A
ki Eo MO =E+ =2t 2l g
pe(E)= — —;— [(k, cos k,Eo)& + (sin k&g — k& cos k,8)] 4 8r 8r?

— r——— —r— a—— —_—— — - - 1 ' —— — —

(a) () |
A Beom

NN
V|V VA

total electric field

Ko K

T. Katsuleas, S. Wilks, P. Chen, J. M. Dawson and J. J. Su,
Particle Accelerators 22, 81 (1985)

M. Tzoufras, et al., Phys. Plas. 16, 056705 (2009)
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Energy spread control by beam loading

One way to limit energy spread in plasma is to “flatten out” the longitudinal field along the bunch
by properly tailoring the beam loading.
Optimal beam profile for non-linear reaime

Optimal beam profile for linear regime 2 R R A
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T. Katsuleas, S. Wilks, P. Chen, J. M. Dawson and J. J. Su,
Particle Accelerators 22, 81 (1985)

M. Tzoufras, et al., Phys. Plas. 16, 056705 (2009)

Andrea R. Rossi Trends in Free Electron Laser Physics, Erice; Italy, May 17-23 2016



A review of plasma based beamline elements for advanced beam manipulation

Energy spread control by hollow plasma channel

Another possibility is to use a hollow plasma channel, which also provides further advantages.
The properties of a square well shaped hollow channel have been first studied in

T. C. Chiou, T. Katsouless, C. Decker, W. B. Mori, . S. Wurtde, G. Shvets, and ] . J. Su, Phys. Plasmes 2,
(1995)

and exploited, in quasi-linear regime, for acceleration in
C. B. Schroeder, E. Esarey, C. Benedetti, and W. Leamans, Phys. Plasnmes 20, 080701 (2013)
We will show the results found in

A. Pukhov, O. Jansen, T. Tueckmantd, | . Thormes, and |. Yu. Kostyukov, Phys. Rev. Leit. 113, 245003
(2014)

which studies the bubble regime.
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Energy spread control by hollow plasma channel

Another possibility is to use a hollow plasma channel’, which also provides further advantages.
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[1] A. Pukhov, et d., Phys. Rev. Lett. 113, 245003 (2014).
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Energy spread control by hollow plasma channel

Another possibility is to use a hollow plasma channel’, which also provides further advantages.
0.03] ' S T ! G 0.008

x/\g E.GV/m n./n, @ / ) .
\\ ek, lcaym

0.00045 .
0.00[wmn i, 0.000

0.00030

ance)

i
& GeV
A 0.0 10 : 210
30000 30050 | 30100 30150  Z/Ag O e "t S V. T ¥
h Small overall and uncorrelated energy spread
Flat longitudinal field Moreover...
[1]A. Pukhov, et al., Phys. Rev. Lett. 113, 245003 (2014). ... little or no self injected spurious charge

... possibility to tune depletion and dephasing lengths
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Energy spread control by plasma dechirper’

Following the idea of corrugated pipe dechirper?, it is possible to arrange plasma density in
order to act as a plasma dechirper.

FACET beam parameters

0, = 25um,0,, = 30 pm, &, = 50 um, &, = 5 um, 2 nC, 23 GeV, 1.0 % rms energy spread

24 T
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[1] V. Wacker, private communication (2015).

[2] K.L.F. Baneand G. Stupakov, Nuc. Inst. Meth. Phys. Res. 690, 106 (2012). S. Antipov, et d., Phys. Rev. Lett. 112, 114801 (2014).
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Energy spread control by alternating focusing'

In linear and quasi-linear regimes, the focusing strength is zero on crest. For a finite length
bunch, however, the tail would be disrupted by defocusing fields. Modulating the plasma density
moves the bunch back and forth the accelerating peak keeping it focused and avoiding chirp

build-up. hase |
—2r  —-3/2r  —m  —1/2m 0 . : :
- - - - alternating focusing laser driven
05 L Tt alternating focusing beam driven
R g P o — - constant focusing laser driven
~ __..‘_:~. -\.:i_;
driver \
100 —80 —60 —40 —20 0 ([nm] S
P #,'L‘ N “ i s - _::‘;‘ - ~
L Skt 4/ 1 Amod alternating density h
R 0 2 4 6 8
—37 —27 -7 0 7 [mm]
+5 Does not relay on beam loading!
constant
R Problematic with bubble regime
R b : . :
I ?’lw ol Correct tapering critical and seems hard to realize
/ alternating :
focusing b 9 . .
N, Emittance conservation (?)
-5

i ) 0 > 1 Beam loading (?)

internal bunch coordinate ¢ [pm]

[1] R. Brinkmann, et al., arXiv: 1603.08489v2 [physics.acc-ph] 2016.
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Beam streaking

(for longitudinal diagnostics)

Diagnose the longitudinal properties of a plasma beam (ultra short) is hard with conventional
methods. A proposal, shows how it is possible to use plasma fields.

Collinear setup

Some field non-
linearities effects
are present

laser

’ «a..?;

plasma target

Resolution in the
bunch core is
below 100 as!

Beam loading may greatly reduce resolution

/2 ¢ 0
[1] 1. Dommair, C. B. Schroeder, K. Floettmann, B. Marchetti, and A. R. Maier, arXiv: 1603.02511v1 [physics.acc-ph] 2016.
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A (cherry picked) FEL oriented manipulation
(not 1n plasma):
chromatic matching'

i.e. a possible answer to the question “how could we run an FEL with the plasma
beams we can produce right now?”

Chicane
Energy De-mixing
el 8827

5 m In-Vac Cryo ready Undulator (PrFeB)
15 mm period
B~15T @ gap=3.6 mm

I ﬁiﬁi A —

Source
40{) MeV

&
First triplet Second trlplet
Re-focusing Chromatic matching
G < 200 T/m G <20 T/m

[1]A. Loulergue, M. Labat, C. Evain, C. Benabderahmane, V. Malka and M.E. Couprie, New | . Phys. 17, 023028 (2015).
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Chromatic matching

Assume a bunch with high energy spread and divergence. After first focusing use a chicane to
stretch the bunch and realize an energy sorting (chirp):

Longitudinal phase space

& | | 0>0 )

. . .
. e - #
B e i
£ of
<
2t - Energy de-mixing Chicane 2 a} o -
! R A Sburrc'h - rSG 6
4 ' = %o 10 o 10 Ly
20 10 ) 10 20
Zium £ fumi

Pictures source: A. Loulergue, LWFA electron beam manipulations for FEL amplification, presented at EAAC 2015.

Transverse phase SPaces

If the beam is focused, each quasi-monochromatic slice will

0.3 : : : : have a waist at a different position.
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Undulator (m)

Undulator {m)

Chromatic matching

The waist slips along the bunch from the tail to the head...

X {pm)

No chromatic matching

. and if they are synchronized ... |

1000~ : e 000 Z : 1000 3+
i} F ! 3 = =
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1000 L o
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T - ey
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Source: A. Loulergue, LWFA electron beam manipulations for FEL amplification, presented at EAAC 2015.

. pretty much like the FEL radiation ...
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Bunch length (M) | | lerque, et al., NJP 17, 023028 (2015).
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Chromatic matching

The waist slips along the b
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Cornerstone application:
All Optical FEL
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AOFEL 1n a nutshell

Simply collide a plasma generated beam with an electromagnetic ondulator (laser):

60+ CQ, envelope
407 _ —
1 pul electron
’g 20 1 = bleartn
= 0
20+
40+
0 i - —=_
-60 ——/ Lsat=10 Lg
-1 0 1 2

z(mm)

First proposed in V. Pdfillo, L. Serafini and P. Tomessini, in Proc. of the 11" European Particle Accderator Conference,
Genova, Italy, 2008.

Studied in A. Bacci, C. Marali, V. Petrillo, A.R. Rossi, L. Serafini and P. Tomessini, Nuc. Inst. Meth. Phys. Res. A 587, 388
(2008)

and in V. Pdrillo, L. Serafini and P. Tomessini, Phys. Rev. STAB 11, 070703 (2008)
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From FEL to AOFEL:

|
1.95 GeV electron§ca|e down linac AND ondulator sizes!

Eleckron socur o=
arnd accelerator

Magnetic structure und. period Au: ~cm

faw km Lihc und. length: ~ 100 m

Electrom trap

100-0.5 A photons
(05A 24KeV) laser A: ~ 1- 10 um
30-150 M eV electrons interaction area ~ few cm

S MW /

~ few cm Linac
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AOFEL: e.m. undulator

RESONANCE CONDITIONS:

(1+ a2 ) Magnetostatic undulator- FEL
Ay =N, >
2Y, Example : for AR=. 1nm, AW=ZCm and a ~ 1
— E =10 GeV

Andrea R. Rossi Trends in Free Electron Laser Physics, Erice; Italy, May 17-23 2016



A review of plasma based beamline elements for advanced beam manipulation

AOFEL: e.m. undulator

RESONANCE CONDITIONS:

v = (1+ aiv) Magnetostatic undulator- FEL
R ~ |"Mw >
2y, Example : for A =.7nm, A =2cmand a_~ 1
— E =10 GeV
(1+ a2 /2) Electromagnetic undulator
A =N,

4y,  Example : for A =.1nm, A =0.8um and a ~ 0.2*

— E =22 MeV

* for many practical reasons, a < 1
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AOFEL : plasma el ectron source

transition
(injection) transition
1%10" (injection)
rising plateau Il 1 \
/‘ e g BUNCH GENERATION e — —
18 region) B elor: i
6x10 (accelerating
— plateau x10'® region)
= . plajgau
S *?
A e
c L } b) . °
410 ° L <
20 50 60 3
z (um, not in
50 60 270
2 (pm, not in scale)
-1.5
El
-2
0 -2.5
-3
transition 1 :
(injection) =
1x10" 5 4
rising pl = transition
(ac ki (injection)
ré 3
6x10' ' ’ ' ' T risi
plateau rising plateau Il
& d) N (accelerating
e -3 : region)
\O/m -¢f| plateau f
c *LR* 2 /
20 50 60 L
z(m, notins -

20

-2.5

-3

-3.5

-4

-4.5

05 1 15 2 25 3 35 4 45 5 o 05 1 15 2 25 3 35 4 45 5
x10° x10°

V. Petrillo, L. Serafini and P. Tomassini, Phys. Rev. STAB 11, 070703 (2008)

50 60 270

2z (1m, not in scale)
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AOFEL: electron bunch

VORPAL results
60 .

Best slices:
we do not
need all the
R bunch to be
> T ek 1 perfect for

. ) lasing

<y>=55

<E>=27 MeV
=20 kA

£,<0.5 mm mrad
AE/E=2 103,10
Q=55 pC

10.01

A/AQ

10.005

S(um)
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AOFEL: FEL radiation

GENESIS 1.3 results
Superradiant

structure N
] (a [
6x10 (@) (b) 2x10
: T
§4x101\ 2
r ] L 1x10°
o
vV 2x10]
0 0
0 2x10° 4x10° ex10° 0 2x10° 4x10° 6x10°
z(m) z (m)
2x10° (€) (d)
o —
L 9
1x10° ] — « £
/0/ 02 g(um) 04 1325 5 (nm) 1937
Single spike structure 0.1 um=330 as Mclmochromatlc
pulse
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AOFEL: FEL radiation

GENESIS 1.3 results
Superradiant

structure (@) e s _ 10
— First peak|  Saturation o
;X P_(W) 210° 1.5 108hann] 2
L E (W) 0.05 012 [
E L () 0.05 0.5 0
o L (mm) 1. 4.5 e’
A (nm) 1.35
s | (€ A A, 0.81% —l

Laser requirements: 250 GW for 5 mm
R=30 um E=4.16J

0.2 s (um) 04 1325 5 (nm) 1.375

Single spike structure 0.1 um=330 as Mcl)nochromatic
pulse
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Conclusion
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Conclusion

szif-control
IS the best

super-power
you can have

Thanks for your attention!

Andrea R. Rossi
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Backup Slides
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Highly chromatic beam transport: theory

22!2

DEF: ¢, =< 2° >< 372" > — < afya’ >°

_ 2_</82’72>_<5'}’>2
DEF: 0F, = =

o
<p, >

DEF: z' =

ASSUME: relativistic electrons (5 ~ 1) and no correlation btw x and
energy

2 =< y>*or <t >< >+ <By>t (<t >< > — <xx’ >?)

|

=<’7>2 (012902 ° —|—€)
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Highly chromatic beam transport: theory
2 2 2 2 2 2
e, =<7 > (UE%UL_U; + € )

NOTICE: plasma accelerated bunches are usually emittance
dominated!

Ei =<7 > (320%0;‘; + 52)
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Velocity bunching

Electron Bunch from RF injector
Initial velocity g ~ 0.994 (4MeV)

*

Stip Back "~
& N
Compression

Phase -90°

RF (Traveling Wave)
Phase velocity By ~ 1

2

B> Pp (tail)
B = Bo

B < Bo (head) Eo.

15+

1

8 input

-2 1.5 -1

05 [+] 0s 1 1.6 2
z imm

-90°

PRrF compresso e

xImm
o

. after compression

02 03 D4 05 06
zimm

52 04 0 DA

Andrea R. Rossi

<
LN TEY om
-
- Ad N .
* -
;5

after compression

L
02 01 o
zimm

L n L
01 02 03 04 05 06

. PRF compressor

-92° |

after compression

02 03 04 05
Z/mm

-02 -01 ] =B ]

0.s
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