

Towards an x-ray FEL oscillator

Ryan Lindberg Argonne National Laboratory

Trends in Free-Electron Laser Physics School/Workshop Wednesday, May 18, 2016 Ettore Majorana Foundation and Centre for Scientific Culture Erice, Sicily, Italy

Acknowledgments

- Argonne National Lab
 - Kwang-Je Kim (also U Chicago)
 - Tomasz Kolodziej
 - Deming Shu
 - Yuri Shvyd'ko
 - Stan Stoupin
- TISNCM
 - Valdimir Blank
 - Sergei Terentyev
- U Chicago
 - Lipi Gupta

- SLAC/LCLS
 - Karl Bane
 - Paul Emma
 - Yuntao Ding
 - Bill Fawley (also Sincotrone Trieste)
 - Zhirong Huang
 - Gabe Marcus
 - Tim Maxwell
 - Tor Raubenheiner
- Peking University
 - Weilun Qin

X-ray FEL oscillator is comparable to optical laser

+ R. Colella and A. Luccio, Opt. Comm. 50, 41 (1984)
 K.-J. Kim, Y. Shvyd'ko, and S. Reiche, PRL 100, 244802 (2008)

XFELO is complementary to high-gain FELs based on self-amplified spontaneous emission (SASE)

Characteristic	SASE	XFELO
Pulse duration	1 to 200 fs	200 to 2000 fs
Photons/puse	~10 ¹²	~109
Energy BW	~ 10 eV	~10 ⁻² eV
Coherence	Transverse	Fully
Repetition rate	Variable	~ MHz
Stability	1-100% depending chosen BW	< 1%
Brightness	~10 ³²	~10 ³²

XFELO Science

- 1. Inelastic x-ray scattering
- 2. Nuclear resonant scattering
- 3. X-ray photoemission spectroscopy
- 4. Hard x-ray imaging
- 5. X-ray photon correlation spectroscopy

XFELO will revolutionize techniques pioneered at 3rd generation light sources, and complement the capabilities of SASE FELs

Linear gain in an XFELO

- Electron beam requirements
 - High brightness: $\varepsilon_x \le 0.3 \ \mu\text{m}$, $\Delta\gamma/\gamma \le \text{few} \times 10^{-4}$
 - Relatively low intensity: $I_{\text{peak}} \sim 10 200 \text{ A}$
 - Moderate duration: 0.2 5 ps
 - Repetition rate = $c/(cavity length) \sim MHz$
- Undulator parameters: $K \sim 1$ and $N_{\mu} \sim 10^3$

Gain is maximized when the electron and laser beams have maximal overlap

And when the beam nearly matches the spontaneous radiation "mode" size

$$Z_{\beta} = Z_R \sim \frac{L_u}{\pi}$$

Single pass gain ~ 0.3 to 2

Bragg mirrors for near-normal reflection

Bragg crystals work via coherent scattering of photons whose wavelength approximately satisfies Bragg's Law, $\lambda = 2d \cos\theta$

Many crystal planes contribute, $N_p \sim 10^5 - 10^8$, and the region of high reflectivity has a bandwidth $\Delta\lambda/\lambda \sim N_p^{-1} < 10^{-5}$

Dominant effects of Bragg crystals are frequency filtering and losses

Temporal and spectral profile evolution

All this relies on high-quality Bragg crystals.

Can real-world diamond crystals approach this ideal performance?

Diamond crystals have superior material properties

Reflectivity of TISNCM[†] synthetic diamond was measured to be > 98% @ the APS

⁺ Technological Institute for Superhard Novel Carbon materials, Russia

There exist regions whose area $> 1 \text{ mm}^2$ that are free of dislocations and stacking faults

8

Yu. Shvyd'ko, S. Stoupin, V. Blank, and S. Terentyev,

Nature Photonics 5, 539 (2011)

60

a

Tests of diamond resiliency under XFELO conditions

8h

X-rays from APS 35 ID-B that are focused to a 130 μ m × 30 μ m spot \rightarrow 8 kW/mm²

Double crystal topography indicates no changes in the rocking curve position/width at a resolution of 10⁻⁶

High resolution measurements showed a shift in peak reflectivity at a level of 10⁻⁸

- The measured ~1 meV shift could be compensated for in XFELO with feedback
- Annealing at 600 C eliminated shift
- Believe that the shift is caused by impurities
- Next experiment will test this theory using an improved vacuum (< 10⁻⁸)

X-ray cavity configurations

K.-J. Kim and Yu. Shvyd'ko, Phys. Rev. ST-AB 12, 030703 (2009)

Cavity stabilization proof of principle

To preserve radiation-electron beam overlap and FEL gain, we require:

- 1. Cavity length stability $\delta L < 3 \mu m$ (relatively easy)
- 2. Crystal angular stability $\delta\theta \sim$ 10 nrad (less straightforward)

Null detection feedback (LIGO): proof of principle experiment @ APS

Crystal stability of \sim 15 nrad rms was shown at the APS HERIX monochromator

Stoupin, Lenkszus, Laird, Goetze, Kim, and Shvyd'ko, Rev. Sci. Instrum. 81, 055108 (2010)

Focusing elements for an XFELO

 Grazing incidence Kirkpatrick-Baez mirrors are being perfected at JTEC, but they are long, heavy, difficult to control, and result in a non-coplanar XFELO geometry

- Grazing incidence mirrors that focus in both planes are possible in theory, but manufacturing such mirrors with micron-scale surface roughness is very difficult
- Beryllium compound refractive lens (CRL) can be a low-loss focusing element for applications requiring long focal lengths (f > 20 m)

APS metrology of Be CRL

99.5% transmission @ 14.4 keV (theory for $d = 30 \mu m$)

Beryllium compound refractive lens test @ APS

- 1. Transmission of Beryllium CRL with f = 50 m was measured to be ~99%
- 2. Wavefront measurement data shows < 1 micron surface errors

3. Be-CRL endurance was tested as a byproduct of diamond crystal experiments, in which a 25 micron thick window was exposed to 3 kW/mm² x-rays

Measurements by S. Stoupin, J. Kryziwinski, T. Kolodziej, Y. Shvyd'ko, D. Shu, X. Shi

XFELO operating at a harmonic of the fundamental can significantly decrease electron beam energy[†]

Madey's theorem says that in the low-gain limit $G_h \propto \frac{\partial}{\partial \omega} S_{\rm spont}(\omega)$

and it turns out that gain can be larger at higher harmonics (fixed e-beam energy, number of undulator periods, etc.)

This conclusion applies if the energy spread is sufficiently small:

 $h \frac{\sigma_{\gamma}}{\gamma} \lesssim \frac{1}{2\pi N_u}$ Variation of the resonance energy at harmonic *h* must be small

- For an XFELO, this typically means that $\Delta \gamma / \gamma < 2 \times 10^{-4} / h$
- Harmonic lasing may make an XFELO possible with low charge operation at the 4 GeV superconducting linac planned for LCLS-II

Possible layout of harmonic XFELO at LCLS-II

Electron beam profile optimization (simulation)

Performance of harmonic XFELO @ LCLS-II

Major Parameters			
Parameter	Value	Units	
Electron energy	4.0	GeV	
Peak current	100-140	Α	
Bunch charge	100	рС	
Bunch length	400	fs	
Energy spread	0.1	MeV	
Norm. emittance	0.3	μm	
Undulator period	2.6	cm	
Undulator K	1.433		
# undulator periods	1250		
Loss+Transmission	20	%	
Photon energy@5 th h	14.4	keV	
Spectral BW	5	meV	
Pulse length	0.5	ps	

"Ultimate" x-ray generation facility

"Ultimate" x-ray generation facility

Frequency stabilized, mode-locked XFELO

- Total bandwidth set by pulse duration ~1/Δt
- Mode spacing set by periodicity 1/T_{period}
- Mode spectral width set by number of modes 1/NT_{period}

Relies on phase coherence across all pulses

Can we stabilize the cavity to less than a wavelength and do this for an XFELO?

Conclusions

- XFELO is a complementary source to SASE FELs: an XFELO is stable with a very narrow bandwidth and comparable brightness
- Many of the XFELO components have been proven, with no show stoppers
 - High brightness electron beam Δγ/γ < 10⁻⁴, ε_{x,n} < 0.2 mm-mrad, I > 20 A, Q > 50 pC < 00
 High quality undulators with minimal trajectory errors < 00
 High reflectivity Bragg crystals < 000
 that can withstand XFELO power densities ? 000
 High efficiency focusing elements that induce small phase errors < 000
 Crystal stabilization scheme < 20 nrad < 000
- XFELO can be used to seed high-gain FEL for intense, fs x-ray pulses
- A mode locked XFELO would bring new optical techniques into x-ray regime

over a ~ kHz bandwidth ?