High quality electron beams from plasma: overview of beam dynamics issues

High quality electron beams from plasma: overview of beam dynamics issues

Plasma accelerators for High Energy Physics and radiation

Magnetised plasma acceleration can be important in astrophysics

Surfatron acceleration, Katsouleas and Dawson 1983 unlimited acceleration of particles in the presence of a magnetic field

Can provide a way to accelerate heavy particles like protons or cosmic rays

Plasma accelerators for astrophysics in the lab

- Magnetic fields can lead to radiation generation and particle acceleration in astrophysics
- Generation and amplification of magnetic fields
- Cosmic ray acceleration

Puzzle on the origin of magnetic fields in astrophysics

Faraday's Law

Electric field for massless electrons

$$\mathbf{E} = \eta \mathbf{J} - \frac{\mathbf{v} \times \mathbf{B}}{c}$$
$$\mathbf{J} = \frac{c}{4\pi} \nabla \times \mathbf{B}$$

$$\mathbf{J} = \frac{c}{4\pi} \nabla \times \mathbf{B}$$

Need magnetic fields to produce electric fields

Contents

- Magnetic field generation in a LWFA
- Magnetic field amplification using electron-positron beams accelerated in a LWFA

- Accelerating high quality electrons to the energy frontier in a single stage: self-modulation instability
- Stabilising the wakefields: hosing instability

Conclusions

Contents

- Magnetic field generation in a LWFA
- Magnetic field amplification using electronpositron beams accelerated in a LWFA

- Accelerating high quality electrons with small energy spreads in self-modulated scenarios
- Stabilising the wakefields: hosing instability

Conclusions

To assist analytical modelling and experimental design in these topics we use particle-in-cell simulations

Integration of equations of motion: moving particles

$$\mathbf{F}_p \to \mathbf{u}_p \to \mathbf{x}_p$$

Interpolation: evaluating force on particles

$$(\mathbf{E},\mathbf{B})_i \to \mathbf{F}_p$$

Deposition: calculating current on grid

$$(\mathbf{x},\mathbf{u})_p \to \mathbf{j}_i$$

Integration of field equations: updating fields

$$(\mathbf{E},\mathbf{B})_i \leftarrow \mathbf{J}_i$$

$$\frac{\partial \mathbf{E}}{\partial t} = c\nabla \times \mathbf{B} - 4\pi \mathbf{j}$$

$$\frac{\partial \mathbf{B}}{\partial t} = -c\nabla \times \mathbf{E}$$

osiris framework

- Massivelly Parallel, Fully Relativistic
 Particle-in-Cell (PIC) Code
- Visualization and Data Analysis
 Infrastructure
- · Developed by the osiris.consortium
 - ⇒ UCLA + IST

UCLA

Ricardo Fonseca

ricardo.fonseca@tecnico.ulisboa.pt

Frank Tsung

tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

code features

- Scalability to ~ 1.6 M cores
- · SIMD hardware optimized
- Parallel I/O
- Dynamic Load Balancing
- QED module
- Particle merging
- GPGPU support
- Xeon Phi support

Full scale simulation of an entire > 1 mm long gas jet without moving window

A. Flacco, J Vieira et al Nature Physics (2015)

Full scale simulation of an entire > 1 mm long gas jet without moving window

A. Flacco, J Vieira et al Nature Physics (2015)

Onset of magnetic field generation during wavebreaking/electron acceleration in a LWFA

Plasma electron density map

shielding: no currents inside the plasma

Wave breaking: hot electrons stream out of the plasma

Electron recirculation at plasma entrance/exit

Cold electron currents form at vacuum-plasma interface

Laser propagation direction

Current loops surrounding the plasma

Currents loop driven by the expansion of hot electrons lead to azimutal large scale and persistent magnetic fields

Scaling laws for the magnetic fields compatible with astrophysical scenarios

B fields compatible with astro scenarios

$$\mathbf{B}_{\theta}[\mathrm{nT}] \simeq 320 \eta_{hot} \sqrt{n_0 \ [\mathrm{cm}^{-3}]}$$

Interstellar medium

Wide range of densities $n_0 \sim 10^{-2} - 1 \text{ cm}^{-3}$, $\eta_{hot} = 0.01 - 1$

 $B_{\theta}\sim 0.1-10$ nT

B-field amplification

http://regmedia.co.uk/2013/11/21/gamma ray burst shell.jpg

Amplification of magnetic fields through the Weibel/Current filamentation instability

Current filamentation instability

Filament formation

Current filamentation instability in neutral fireballs could amplify seed magnetic fields

Experiments demonstrated e-e+ fireball production

e-e+ beam filamentation leads to magnetic field amplification

Particle acceleration, shocks and Gamma ray bursts (in the lab with plasma accelerators?)

Fireball model

Collisionless shock

- Particle mean-free-path much larger than system size
- Scattering mediated by collective plasma instabilities

Main challenges

- Particle Heating and scattering
- **♦** Shock formation
- Particle Acceleration/ cosmic rays
- **♦** Radiation emission

Shock formation and evolution

Ion density

Generation of plasma waves for particle acceleration using long beams

Contents

- Magnetic field generation in a LWFA
- Magnetic field amplification using electron-positron beams accelerated in a LWFA

- Accelerating high quality electrons with small energy spreads in self-modulated scenarios
- Stabilising the wakefields: hosing instability

Conclusions

A driver with more than 100 kJ would be required to achieve 10 TeV electron acceleration in a single stage.

Going beyond the energy frontier require very energetic beams

Self-modulated proton driven plasma wakefield accelerator

- N. Kumar et al. PRL 104 255003 (2010)
- C. Schroeder et al. PRL 107 145002 (2011)

Self-modulation instability

Similar structures can be found in astrophysical scenarios

Self-modulation

Sausage instability

Self-modulation instability physical picture

Self-modulation instability physical picture

Analytical model

Plasma density perturbation

$$\left(\nabla_{\perp}^{2} - k_{p}^{2}\right) \frac{E_{r} - B_{\theta}}{E_{0}} = -k_{p} \frac{\partial (\delta n/n_{0})}{\partial r}$$

Beam radius envelope equation

$$\frac{\mathrm{d}^2 \sigma_r}{\mathrm{d}z^2} - \frac{\epsilon_n^2}{4\gamma^2 \sigma_r^3} = \mp \frac{1}{\gamma \sigma_r} \frac{m_e}{m_b} \langle k_p r \frac{E_r - B_\theta}{E_0} \rangle$$

Self-modulation instability physical picture

Ion motion can occur in self-modulated regimes when the length of the driver is comparable to the plasma ion wavelength

Ion motion can be mitigated by using heavier plasma ions

Beam loading plasma wakefields to minimize the energy spread

Recent experiments using short beam drivers demonstrated sub-percent energy spreads

Nearly optimal beam loading

Efficiency above 20 %

M. Litos et al, Nature 2015

Optimal beam loading is also important to preserve beam emittance

Emittance

Emittance is the area enclosed by the transverse beam phase space

$$\epsilon = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2} p_z / (m_e c)$$

prime denotes temporal derivative

Transverse betatron trajectories

$$\mathbf{x}_{\perp} \propto \mathbf{x}_{\perp 0} \cos(\omega_{\beta} t + \phi)$$

$$\mathbf{v}_{\perp} \propto -\mathbf{x}_{\perp 0}\omega_{\beta}\sin(\omega_{\beta}t + \phi)$$

Beam emittance evolution in a plasma accelerator

Beam emittance stays constant

Beam electrons oscillate with the same betatron frequency

Phase space area is preserved

Beam emittance increases

Beam electrons oscillate with different betatron frequencies

Conditions for emittance preservation

Betatron frequency

$$\omega_{\beta} \propto \left(\frac{\alpha}{\gamma}\right)^{1/2} \omega_{p}$$

 γ is the relativistic factor α is related to the focusing force

Emittance preserved if

- α and γ are the same for every beam particle
- Harmonic (sinusoidal) betatron trajectories

Requirements

- Small energy spreads
- Linear focusing force (harmonic oscillations)

Beam emittance increases

Non-linear regime

- Optimal beam loading can be reached with tailored beam density profiles
- Focusing force is linear everywhere
- Focusing force is the same along the beam

Contents

- Magnetic field generation in a LWFA
- Magnetic field amplification using electron-positron beams accelerated in a LWFA

- Accelerating high quality electrons with small energy spreads in self-modulated scenarios
- Stabilising the wakefields: hosing instability

Conclusions

Hosing instability/beam breakup instability (BBU) in a nutshell

Hosing in plasma

- Beam expels plasma electrons
- Beam centroid deviation X_b drives deviation in evolution of X_c
- Channel centroid X_c feeds back into temporal evolution of X_b at beam-tail

BBU in accelerating cavity

- Initial beam centroid deviation causes charges to accumulate in the metallic plates.
- Wakefields created in the cavity enhance the initial perturbation

Kink instability: same modes in totally different physical contexts

Hosing instability

Kink instability

Astronomy & Astrophysics (2006)

Different regimes unified by a similar set of equations

Regimes

Beam driver

- Long beam/short beam limits
- Multi bunch instability (long range wakefields)
 - Important for long drivers
 - Competition with self-modulation can be important
- Single bunch instability (short range wakefield)
 - Drivers shorter than the plasma wavelength

Plasma response (properties of the cavity boundary)

- Adiabatic (preformed, straight channel) /nonadiabatic (nonlinear, relativistic regime)
- Self-generated curved channel (i.e. blowout regime)
- Relativistic/non-relativistic boundary
- Magnetic field effect

Particles probe different wakefields

Beam centroid evolution in time

$$\frac{\partial^2 X_b}{\partial t^2} + \omega_\beta^2 X_b = \omega_\beta^2 X_c$$

Channel centroid evolution in comoving coordinate $\xi = ct - z$

$$\frac{\partial^2 X_c}{\partial \xi^2} + k^2 c_{\psi} c_r X_c = k^2 c_{\psi} c_r X_b$$
$$k = k_p / \sqrt{2}$$

2-particle model: Intuitive mathematical approach to understand hosing

Physical picture

Beam centroid evolution in time

$$\frac{\partial^2 X_b}{\partial t^2} + \omega_\beta^2 X_b = \omega_\beta^2 X_c$$

Channel centroid formal solution

$$X_c \sim \int d\xi' \frac{n_b(\xi')}{n_0} X_b \sin\left[k_p(\xi - \xi')\right]$$

2 particle model

Propagation direction

$$n_b = n_{b0}\delta(\xi) + n_{b1}\delta(\xi - \xi_1) + \dots$$

Particles probe different wakefields

Ist particle (X_c=0):

$$X_b \sim X_{b0} \cos(\omega_{\beta} t)$$

2nd particle

Channel centroid oscillates at $k_p\xi$ and at $\omega_{\beta}t$

$$X_c \sim X_{b0} \cos(\omega_{\beta} t) \sin(k_p \xi)$$

Beam centroid is resonantly driven:

$$\frac{\partial^2 X_b}{\partial t^2} + \omega_\beta^2 X_b \sim \omega_\beta^2 X_{c0} \sin(k_p \xi) \cos(\omega_\beta t)$$

Beam centroid oscillations grow secularly with t

$$X_{b1} \sim t \cos(\omega_{\beta} t)$$

Long beam limit

Competing self-modulation and hosing instabilities

Long beam limit Competing self-modulation and hosing instabilities

Growth rate

Evolution of beam centroid

$$X_b \sim X_{b0} \exp(N) \cos(k_p \xi + \eta N + \phi)$$

Number of e-foldings

$$N \sim \left(\omega_{\beta}^2 t^2 k_p \xi\right)^{1/3}$$

Centroid oscillations grow with t and with §

Hosing could destroy self-modulation

Growth rate for the hosing instability is remarkably similar to self-modulation

Beam break up could occur in experiments

Multi-bunch limit: Already self-modulated wakes can suppress hosing

J. Vieira et al. PRL 112, 215001 (2016)

Centroid of each beamlet

$$\frac{\partial^2 x_c^{(n)}}{\partial z^2} + \frac{\delta n}{n_0} x_c^{(n)} = \sum_{i < n} x_c^{(i)} w^{(i)}$$

δn grows along the beam. Betatron oscillations of each beamlet are different.

Suppression mechanism

- Secular wakefield growth prevents resonant centroid oscillations
- Betatron frequency detuning due to resonant wakefield excitation
- Analogous to BNS damping!

Theory including relativistic effects is in very good agreement with simulations

D. H. Whittum, PRL 67, 991 (1991)

C. K. Huang et al. PRL 99, 255001 (2007)

Recent progresses indicate that hosing of the driver beam can be suppressed

Hosing in the short beam limit for a single bunch

Hosing can still be an issue

Hosing in the short beam limit for a single bunch

Hidden topic

Can we produce a plasma-based FEL?

A novel plasma based radiation source can be explored at ELI: Transverse electron oscillations produce betatron radiation

Achieving temporal coherence is important to enhance the output energy of x-rays.

Betatron radiation

Main features

- Broad spectrum
- Collimated source (few mrads)
- Multi-keV source

Applications (so far)

- Warm dense matter
- High resolution imaging

Self-guiding in nonlinear wakes

- I Random interference E \sim N_{particles}
- II Electron bunching (FEL instability) by the emitted radiation and amplification
- III Coherent radiation emission E ~N_{particles}²

Conditions for betatron radiation amplification

A small $\Delta \lambda_r$ is needed

Spectral width must be sufficiently small

$$\Delta \lambda_r / \lambda_r \ll \rho$$

 $\rho \ll 1$ is the FEL parameter for the betatron

If not the amplification is reduced, can be stopped or even completely absent

Small $\Delta \gamma$ and Δr_0 is needed

$$\lambda_r = \frac{2 + K^2}{4\gamma_0^2} \lambda_\beta$$

$$\lambda_{\beta} = 2\pi c \frac{\sqrt{2\gamma_0}}{\omega_p}$$

$$K = r_0 k_p \sqrt{\gamma/2}$$

Very small energy spreads and narrow beams

$$\Delta \gamma / \gamma \ll \rho$$

$$\Delta r_0/r_0 \ll \rho$$

Two dimensional simulations show that amplification is possible

Initial simulation parameters

•
$$\gamma_0 = 50$$
 •I = 0.8 kA

$$\bullet I = 0.8 \text{ kA}$$

•
$$\rho = 4.7 \times 10^{-2}$$

Power and spectrum

X. Davoine et al

3D simulation results also show bunching and coherent betatron emission

Contents

- Magnetic field generation in a LWFA
- Magnetic field amplification using electron-positron beams accelerated in a LWFA

- Accelerating high quality electrons with small energy spreads
- Stabilising the wakefields: hosing instability

Conclusions

Conclusions

Laboratory astrophysics

- Plasma accelerators could produce electron (and positron) beams to test instabilities relevant for astrophysics.
- Can we observe shocks in the lab and cosmic ray acceleration analogues?

Low energy spread electron beams

- Energy spreads can be minimised and beam emittance preserved through optimal beam loading
- Can we use current electron beams from plasma accelerators to drive an FEL?

Hosing and beam break-up

- Plasma fields can mitigate and damp hosing of the driver
- How can we damp hosing of the witness beam?

Jorge Vieira Trends in FEL Physics | May 22 2016

Acknowledgments

- Work in collaboration with/contributions from:
 - A. Flacco, V. Malka (LOA), G. Sarri (Queens), W. B. Mori (UCLA), P. Muggli (MPP), T. Mehrling, L.O. Silva, R.A. Fonseca, S.F. Martins, M. Fiore, U. Sinha (IST); C. Huang (LLNL);
- Simulation results obtained at SuperMUC and FERMI through PRACE

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

