

Alberto Marocchino on behalf on the SPARC_Lab collaboration

layout

- What is plasma lens
- ▶ Why is it so important?
- Plasma lens brief historical review
- Overdense VS underdense lenses
- Plasma lens at SPARC_Lab
- Conclusions

what is a plasma lens?

bunch at some z

bunch at some $z+\Delta z$

- Transversely Smaller
- ▶ Trying to preserve:
 - emittance
 - \circ energy spred

lattice: plasma-lens + FEL layout

lattice: plasma-lens + FEL layout

Electrostatic lenses:

- focusing is due to: Electrostatic fields in a quasi neutral plasma
- Field are created by an electron beam travelling through a neutral gas
- work mainly by: Halsted and Gabor

Active lenses:

- focusing is due to: 'plasma discharge' background electron motion
- for large aperture and large gradients
- for electrons: conditions imply self focusing

- focusing is due to: preformed, current-free and neutral plasma
- firstly studied by: Bennett, Katsouleas

Electrostatic lenses:

- focusing is due to: Electrostatic fields in a quasi neutral plasma
- Field are created by an electron beam travelling through a neutral gas
- work mainly by: Halsted and Gabor

Active lenses:

- focusing is due to: 'plasma discharge' background electron motion
- for large aperture and large gradients
- for electrons: conditions imply self focusing

- focusing is due to: preformed, current-free and neutral plasma
- firstly studied by: Bennett, Katsouleas

Electrostatic lenses:

- focusing is due to: Electrostatic fields in a quasi neutral plasma
- Field are created by an electron beam travelling through a neutral gas
- work mainly by: Halsted and Gabor

Active lenses:

- focusing is due to: 'plasma discharge' background electron motion
- for large aperture and large gradients
- for electrons: conditions imply self focusing

- focusing is due to: preformed, current-free and neutral plasma
- firstly studied by: Bennett, Katsouleas
- high focusing gradients
 (much larger than
 conventional quadrupole)
- Sym focusing
- # compact (~cm)

Electrostatic lenses:

- focusing is due to: Electrostatic fields in a quasi neutral plasma
- Field are created by an electron beam travelling through a neutral gas
- work mainly by: Halsted and Gabor

Active lenses:

- focusing is due to: 'plasma discharge' background electron motion
- for large aperture and large gradients
- for electrons: conditions imply self focusing

- focusing is due to: preformed, current-free and neutral plasma
- firstly studied by: Bennett, Katsouleas
- * high focusing gradients (much larger than conventional quadrupole)
- Sym focusing
- * compact (~cm)

Electrostatic lenses:

- focusing is due to: Electrostatic fields in a quasi neutral plasma
- Field are created by an electron beam travelling through a neutral gas
- work mainly by: Halsted and Gabor

Active lenses:

- focusing is due to: 'plasma discharge' background electron motion
- for large aperture and large gradients
- for electrons: conditions imply self focusing
- Sym focusing
- * compact focusing
 (quadrupole like)

- focusing is due to: preformed, current-free and neutral plasma
- firstly studied by: Bennett, Katsouleas
- high focusing gradients
 (much larger than
 conventional quadrupole)
- Sym focusing
- # compact (~cm)

from the 80s to today

- First idea of passive lenses: *Bennett* while studying pinch
- First idea: plasma discharge as a focusing lens
 - T. Katsouleas '*Physical mechanism in the plasma wakefield accelerator*' Physical Review A (1986)
 - P. Chen 'A possible final focusing mechanism for linear colliders', Particle Accelerator (1987)
- Overdense lenses
 - R. Keinings 'Two dimensional dynamics of the plasma wakefield accelerator' Physics of fluids (1987)
- Underdense lenses
 - J. J. Su 'Plasma lenses for focusing particle beams' Physical Review A (1990)

from the 80s to today

- First demonstration of passive lens (2.5 MeV bunch)
 - S. E. Graybill 'Observation of magnetically elf-focusing electron streams' Applied Physics Letter (1966)
- Plasma (thick) lens for 'colliders' (21 MeV, 5 nC)
 - J. B. Rosenzweig 'Demonstration of electron beam self-focusing in plasma are fields' Physics of Fluids (1990)
- Plasma thin lens (0.5 nC)
 - H. Nakanishi 'Direct observation of plasma-lenseffect' PRL (1991)

thick-thin lenses

Thick

Thin

bunch in vacuum

Simplified-intuitive plasma lens treatment

bunch in vacuum assumptions

Some assumptions have been made:

- no temperature (cold)
- ▷ beam velocity is c

passive lenses

 $F_{-BCK} = -2\pi m_{p}c^{2} 2 \hat{u}_{2}$

focal Length : $f = \frac{2 \chi c^2}{L \omega_p^2}$

= 5.6.10 H Y L Mp

active lenses

Far away from Bennett threshold

Bennett Condition:

$$Nk_bT = \frac{\mu_0 I^2}{8\pi}$$

$$Nk_bT = \frac{\mu_0 T^2}{8\pi}$$

$$n_p = 10^{17} \mathrm{cm}^{-3}$$

 $T_e = 2 \mathrm{KeV}$
 $R = 500 \mu m$

$$I \rightarrow 710A$$

1 77

-3

eV

Far away from Bennett threshold

Sausage instability

Kink instability

the toolbox

comparison ALaDyn Architect (Ez)

on crest beam

Charge:	50 pC
Length:	224 um (750 fs)
Emittance:	1.1 um (1 um @ cathode)
Energy:	127 MeV (60MW power on K2 line)
Energy spread:	12 keV
Spot:	113 um
Twiss a:	-0.11
Twiss β:	2.86 m

on crest beam

on crest beam

compressed beam

Charge: 50 pC 18 um (60 fs) Length: 1.15 um (1 um @ cathode) Emittance: 77 MeV (60MW power on K2 line) Energy: Energy spread: 280 keV Spot: 123 um Twiss α: -0.32 Twiss β: 1.98 m

Conclusions

A brief overview of lenses

- different types
- the working mechanism

Plasma Lenses at LNF

- active plasma lenses
- identify an effective mechanism for PWFA pre-focusing