

Advanced beam manipulation experiments at SPARC_LAB

Riccardo Pompili LNF-INFN

on behalf of the SPARC_LAB collaboration

riccardo.pompili@Inf.infn.it

SPARC_LAB test-facility

Ferrario, M., et al. "SPARC_LAB present and future." NIMB 309 (2013): 183-188.

High brightness photo-injector

Serafini L., Ferrario M. "Velocity bunching in photo-injectors." AIP conference proceedings. 2001. Anderson, S. G., et al. "Velocity bunching of high-brightness electron beams." PRSTAB 8.1 (2005): 014401.

FLAME: a 130 TW Ti:Sa laser

Radiation source activities

ARTICLE

Received 16 Jun 2015 | Accepted 23 Mar 2016 | Published 26 Apr 2016

DOI: 10.1038/ncomms11421

Strong nonlinear terahertz response induced by Dirac surface states in Bi₂Se₃ topological insulator

Flavio Giorgianni¹, Enrica Chiadroni², Andrea Rovere¹, Mariangela Cestelli-Guidi², Andrea Perucchi³, Marco Bellaveglia², Michele Castellano², Domenico Di Giovenale², Giampiero Di Pirro², Massimo Ferrario², Riccardo Pompili², Cristina Vaccarezza², Fabio Villa², Alessandro Cianchi⁴, Andrea Mostacci⁵, Massimo Petrarca⁵, Matthew Brahlek⁶, Nikesh Koirala⁶, Seongshik Oh⁶ & Stefano Lupi¹

Plasma-based acceleration activities

- Several plasma-based schemes will be tested
 - Beam-driven resonant scheme → 1-2 GV/m exp.
 - n ~1016 cm-3, 1 mm diameter capillary, Hydrogen
 - Laser-driven, external injection → 5-10 GV/m exp.
 - $n_a \sim 10^{17}$ cm⁻³, 100 μ m diameter capillary, Hydrogen
- Goal: high quality accelerated beams
 - Maintain the high brightness of injected beams

Ultra-short electron beams

- Current demands require high current beams
 - ✓ PWFA-LWFA: high wakefield amplitude (i.e. high driver density), low energy spread (i.e. short witness).
 - ✓ Advanced radiation sources: high peak currents (FEL), short beams (broadband THz radiation).
- Velocity bunching @ SPARC LAB
 - RF structure embedded in solenoid fields emittance compensation

Accelerating

Decelerating

REAMPLITAGE

Ferrario, M.et al. "Experimental demonstration of emittance compensation with velocity bunching." PRL 104.5 2010.

Laser-comb with velocity bunching

- **Laser-comb**: multiple bunches train produced directly at the cathode
 - ✓ Pulses delayed by birefringent crystals, delay lines to take full control of distances.
 - ✓ Easy setup, half-wave plates for (un)balancing (charge ramps...)

Ferrario, M., et al "Laser comb with velocity bunching: Preliminary results at SPARC." NIM 637.1 2011 S43-S46.

- Velocity bunching for bunch compression
 - Distance and duration tuning by moving S1 phase
 - Different approach with respect to other multibunches schemes, e.g. @ FACET.

C. Ronsivalle et al. "Large-bandwidth two-color free-electron laser driven by a comb-like electron beam." New Journal of Physics (2014): 033018.

Hogan, M. J., et al "Plasma wakefield acceleration experiments at FACET." New Journal of Physics 2010 055030.

Tuning knobs

Chiadroni, E., et al. "Characterization of the THz radiation source at the Frascati linear accelerator." RSI 84.2 2013 Mostacci, A., et al. "Advanced beam manipulation techniques at SPARC."Proceedings of IPAC2011

Measurement tools

Cianchi, A. et al. Six-dimensional measurements of trains of high brightness electron bunches. PRSTAB 18 082804.

Beam manipulation with velocity bunching

VB dynamics: 1 driver + witness

Experimental results!

Laser profile on photo-cathode

LPS at linac exit

Current profile

VB dynamics: N driver + witness

Experimental results!

50 pC drivers + 20 pC witness

resonant scheme @ $n_n = 10^{16}$ cm⁻³ \rightarrow bunch distance = $\lambda_n \sim 1.1$ ps

Laser profile on photo-cathode

Witness – tuning and characterization

Ramped comb beams

z-x view

Longitudinal Phase Space

Free Electron Laser exotic schemes

Two colors FEL

- Novel scheme for the generation of trains of ultra-short radiation pulses

 - ▼ The FEL amplification process takes place independently if

- λ (nm) N=2(b) * exp. data
- The total radiation bandwidth is set by the bunch energy separation
 - ✓ Short time structures (~1/N)
- Double-peaked spectrum
 - ✓ Time separation between fringes (ΔT) is a function of the energy difference (ΔE)

Petrillo, V., et al. "Observation of time-domain modulation of free-electron-laser pulses by multipeaked electron-energy spectrum." Physical review letters 111.11 (2013): 114802.

Measurement

Example of bunch train

Quantity	Beam A	Beam B
Energy (MeV)	90.11 ± 0.06	93.04 ± 0.10
Total charge (pC)	150 ± 10	165 ± 10
Emittance x (mm mrad)	1.56 ± 0.10	1.68 ± 0.18
Emittance y (mm mrad)	1.70 ± 0.12	1.81 ± 0.15
Energy spread (MeV)	0.62 ± 0.01	0.59 ± 0.01
Energy spread single	0.30 ± 0.01	0.27 ± 0.01
beamlet (MeV)		
Energy separation (MeV)	1.01 ± 0.11	1.07 ± 0.14
Time duration (ps)	0.63 ± 0.03	0.30 ± 0.01
Corrected FEL parameter single	5×10^{-4}	1.5×10^{-3}
beamlet	1657 325 - Spanish State (165	11 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15
3D cooperation length single	36	12.5
beamlet (µm)		

$$L_{b}{\le}2\,\pi\,L_{c}$$

Single-spike condition is satisfied

Petrillo, V., et al. "Observation of time-domain modulation of free-electron-laser pulses by multipeaked electron-energy spectrum." Physical review letters 111.11 (2013): 114802.

Resulting SASE FEL radiation

- FROG device used for single-shot measurements
 - Each snapshot contains both the spectral and temporal information
- FEL radiation phase-space "mimics" the bunch longitudinal phase-space
- **Beam A** $\Delta \lambda = 17.88 \text{ nm}, \Delta T = 112 \text{ fs} \rightarrow \text{In agreement with } \Delta E = 1.03 \text{ MeV}$
 - **Beam B** $\Delta \lambda = 18.62 \text{ nm}, \Delta T = 91 \text{ fs} \rightarrow$
 - In agreement with $\Delta E = 1.1 \text{ MeV}$

Seeded scheme

- Single laser pulse (linearly chirped) used to seed simultaneously both bunches
 - The wings of the laser spectrum actually act as seed
 - The (small) linear chirp ensures temporal overlap
- Two colors enhancement with respect to SASE

Petralia, A., et al. "Two-color radiation generated in a seeded free-electron laser with two electron beams." PRL 115.1 (2015): 014801

Resulting seeded FEL radiation

- Two colors stability increased with seed laser
 - 66% (others with single-spike structure) SASE:
 - **SEEDED:** 99%
- Bandwidth
 - SASE (SEEDED) 1st spike: 7.2 (3.1) nm
 - **SASE (SEEDED) 2nd spike:** 7.9 (2.7) nm

High quality ultra-short beams with VB

Collected FEL light, 100 fs (rms), 40 µJ

Bunch parameters

Charge (pC)	Energy (MeV)	Energy Spread (%)	Duration (fs)	Emittance (µm)	Peak current (A)
20	114	0.1	26	1.2	400

Laser vs e beam time-jitter reduction

Conclusions

- Advanced electron beam configurations have been produced and tested at the SPARC LAB test-facility
- Low emittance and ultra-short beams consisting in multiple bunches for
 - Plasma Wakefield Acceleration (PWFA)
 - Advanced radiation source
- Several results obtained for Free Electron Laser applications by employing exotic electron beams
 - Two colors FEL, both in SASE and seeded schemes
 - Complete characterization of FEL radiation (temporal + spectral)

Acknowledgments

- M.P. Anania, M. Bellaveglia, A. Biagioni, F. Bisesto, M. Castellano, E. Chiadroni, D. Di Giovenale, M. Ferrario, G. Di Pirro, S. Romeo, J. Scifo, V. Shpakov, F. Villa (INFN, Frascati)
- A. Cianchi (Tor Vergata University of Rome)
- F. Filippi, F. Giorgianni, A. Marocchino (Sapienza University of Rome)
- F. Ciocci, A. Petralia (ENEA, Frascati)
- V. Petrillo, A.R. Rossi (INFN, Milano)

This work has been partially supported by the EU Commission in the Seventh Framework Program, Grant Agreement 312453-EuCARD-2 and the Italian Minister of Research in the framework of FIRB – Fondo per gli Investimenti della Ricerca di Base, Project n. RBFR12NK5K.

Thank you for your attention!

Plasma Wakefield Acceleration

PWFA – Quasi-nonlinear regime

Condition for blowout:

$$\frac{n_b}{n_p} > 1$$

- Bubble formation w/o wave-breaking, $λ_n$ is constant → **resonant scheme in blowout**
- Linear focusing force → emittance preserved
- A measure of nonlinearity is the *normalized charge*

$$\widetilde{Q} \equiv \frac{N_b k_p^3}{n_p} = 4 \pi k_p r_e N_b \rightarrow \begin{cases} \ll 1 & \text{linear regime} \\ > 1 & \text{blowout regime} \end{cases}$$

Using low emittance, high brightness beams we have

$$\widetilde{Q}$$
<1 $\frac{n_b}{n_p}$ >1

These conditions define the quasi-nonlinear (QNL) regime

$$- n_p = 10^{16} \text{ cm}^{-3}, Q_D = 200 \text{ pC}, \sigma_t = 180 \text{ fs}, \sigma_x = 5.5 \text{ um} \rightarrow n_b \sim 5n_p \text{ and } \widetilde{Q} = N_b k_p^3 / n_p \approx 0.8$$

Rosenzweig, J. B., et al. "Plasma Wakefields in the Quasi-Nonlinear Regime." (2010): 500-504. Londrillo, P., et al. "Numerical investigation of beam-driven PWFA in quasi-nonlinear regime." NIM 740 (2014): 236

Acceleration in plasma

- Hybrid kinetic-fluid simulation by **Architect**
 - PIC (bunch), fluid (plasma), 3-5 hours for 3 cm
 - Cross-checked with full PIC codes (ALaDyn)

	Q (pC)	σt (fs)	σx (μm)	E (MeV)	ε (μm)
Driver	200	180	5.5	116	4.5
Witness	20	35	3	116	2.4

Single-shot and non-destructive tool

- Multi-bunches trains have heen measured with Electro-Optical Sampling
 - ✓ Single-shot, non-intercepting
 - ✓ 80 fs (rms) temporal resulution
- Goal: monitor beam injection in plasma

Spatial decoding

R. Pompili, et al., NIM A: Accelerators. 740, 216 (2014).

Laser comb - optical setup

Incoming UV laser

Courtesy F. Villa

Witness beam extraction

- A second PMQ triplet is needed to catch the witness at plasma exit
 - First PMQ is 11 cm downstream the capillary
 - Large emittance growth in the drift due to the high beam divergence:

$$\epsilon_n^2 = \langle \beta \gamma \rangle^2 \left(s^2 \sigma_E^2 \sigma_x^4 + \epsilon_g^2 \right)$$
Leading term

Tapering A.R. Rossi

Migliorati, M., et al. "Intrinsic normalized emittance growth in laser-driven electron accelerators." PRSTAB 16.1 (2013): 011302.

Beam matching

First attempt to accelerate a witness bunch

Laser duration (rms) at cathode: 150 fs

Laser pulse distance at cathode: 2.4 ps

Driver-Witness distance at linac exit: 550 fs

	Charge (pC)	Energy (MeV)	Duration (fs)	Transverse spot (µm)	Emittance (µm)
Driver	200	107.6	180	5.5	4.5
Witness	20	107.4	35	3	2.4

- Matching the beam injection in plasma
 - Driver duration: $k_p \sigma_z \sim \lambda_p/4$
 - Plasma oscillation requires a Twiss

$$\beta_{eq} = \sqrt{\gamma/2\pi r_e n_0}$$

Witness envelope oscillation

$$\ddot{\sigma}_x + \frac{\dot{\gamma}}{\gamma} \dot{\sigma}_x + \frac{k_p^2}{3\gamma} \sigma_x = \frac{\epsilon_n^2}{\gamma^2 \sigma_x^3} + \frac{k_c}{\gamma^3 \sigma_x^3}$$

@ n₀~10¹⁶ cm⁻³

 $ightharpoonup eta_{eq} = 1.1 \text{ mm (D,W)}$

 $\checkmark \sigma_{x} = 2.5 \, \mu m \, (W)$

Ion focusing

Space-charge term

Beam-driven Plasma Wakefield Acceleration

PWFA – Quasi-nonlinear regime

Condition for blowout:

$$\frac{n_b}{n_p} > 1$$

- Bubble formation w/o wave-breaking, $λ_n$ is constant → **resonant scheme in blowout**
- Linear focusing force → emittance preserved
- A measure of nonlinearity is the *normalized charge*

$$\widetilde{Q} \equiv \frac{N_b k_p^3}{n_p} = 4 \pi k_p r_e N_b \rightarrow \begin{cases} \ll 1 & \text{linear regime} \\ > 1 & \text{blowout regime} \end{cases}$$

Using low emittance, high brightness beams we have

$$\widetilde{Q}$$
<1 $\frac{n_b}{n_p}$ >1

These conditions define the quasi-nonlinear (QNL) regime

$$- n_p = 10^{16} \text{ cm}^{-3}, Q_D = 200 \text{ pC}, \sigma_t = 180 \text{ fs}, \sigma_x = 5.5 \text{ um} \rightarrow n_b \sim 5n_p \text{ and } \widetilde{Q} = N_b k_p^3 / n_p \approx 0.8$$

Rosenzweig, J. B., et al. "Plasma Wakefields in the Quasi-Nonlinear Regime." (2010): 500-504. Londrillo, P., et al. "Numerical investigation of beam-driven PWFA in quasi-nonlinear regime." NIM 740 (2014): 236

Acceleration in plasma

- PIC (bunch), fluid (plasma), 3-5 hours for 3 cm
- Cross-checked with full PIC codes (ALaDyn)

	Q (pC)	σt (fs)	σx (μm)	E (MeV)	ε (μm)
Driver	200	180	5.5	116	4.5
Witness	20	35	3	116	2.4

Beam-driven PWFA at SPARC LAB

Laser-comb: optical setup

Villa, F., et al. "Laser pulse shaping for multi-bunches photo-injectors." NIM A 740 (2014): 188-192.