

Past, present and future of the MAGIC Dark Matter hunt program

Michele Doro*

S. Lombardi, P. Giammaria, J. Palacio, J. Rico, M. Vazquez, for the MAGIC Collaboration *University and INFN Padova michele.doro@pd.infn.it

Outline

- Hunting dark matter
- Review of MAGIC results

1 × 1

- A look at the future
- Conclusions

2

MAGIC Facts

- Started as a single telescope in 2004
- Operating in **stereo-mode** since 2009
- Designed optimized for: low-energy, fast repositioning
- Collaboration of ~160 scientists from Germany, Spain, Italy, Switzerland, Finland, Croatia, Bulgaria, Poland, India and Japan
- 17m diameter dish
- Energy range: 70 GeV-30 TeV (with standard trigger) and down to 30 GeV (with sumtrigger)
- ✤ Angular resolution: ~0.1°; Energy resolution: ~15-25%
- Pointed mode observations (Field of View: ~3.5°)

Astronomic Observatory of Roque de Los Muchachos (~2200 m a.s.l.), La Palma (Spain)

A continuous effort

 \rightarrow ~10-fold improvement at the lowest energies !!

• Mono:

- Light Gray circles: first installation (2005)
- Dark gray: different readout system (2008)
- **Stereo**-phase:
 - Black triangles: stereo phase 1 (2010)
 - Squares: stereo after camera upgrade:
 - zenith angle below 30° (red, filled),
 - 30 45° (blue, empty)
- Sum-trigger allowed
 <50 GeV

← 16 times less needed observation time!

Hunting many dark mysteries (beside astronomy)

Axion-like particles

Primordial black holes evaporation

Dark Matter

Magnetic monopoles

Quark matter

Lorentz Invariance

What is DM??

- See introductory talk by Jan too
- Where to look?

What influences the flux on Earth

- Hunting the highest Jfactor
- Left with huge uncertainties in the particle physics

Dark Matter Program

***** DM anisotropies

+ In principle possible with IACTs although challenging

*Galactic halo and the halo around

- + Highest *J-factor*
- Strong Astrophysical contamination
- Huge uncertaintiy in core\cusp
- "wrong" hemisphere for MAGIC)

* Galaxy Clusters

- + Huge amount of DM but far distance → moderate/low J-factor
- High astropysocal contamination
- Large uncertainties in baryon feedback and substructure contributions
- Extended

* Dwarf Galaxies

- + DM dominated (high M/L ratios) and Free from astroph. bkg
- + Less uncertainties on *J-factors*
- Low J-factor

Dark Clumps?

- + Free from astroph. bkg
- + Nearby and numerous
- How to know where they are?
- Bright enough?

10 years ago

 In 2006, hints of detection of the Draco dsph by CACTUS, GLAST was to be launched, and there were good expectations that short-exposure might have been sufficient All instruments launched in the search!...but investing few hours

Dwarf Satellite Galaxies		Obs. Time [h]		
Draco	2003	7.4	Whipple	[5]
	2007	7.8	MAGIC	[7]
	2007	18.4	VERITAS	[8]
Ursa Minor	2003	7.9	Vhipple	[5]
	2007	18.9	VERITAS	[8]
Sagittarius	2006	11	H.E.S.S.	[9]
Canis Major	2006	9.6	H.E.S.S.	[10]
Willman 1	2007-2008	13.7	VERITAS	[8]
	2008	15.5	MAGIC	[11]
Sculptor	2008	11.8	H.E.S.S.	[12]
Carina	2008-2009	14.8	H.E.S.S.	[12]
Segue 1	2008-2009	29.4	MAGIC	[13]
	2010-2011	48	VERITAS	[14]
Boötes	2009	14.3	VERITAS	[8]

MD, NIM A 742 (2014)

Search expanded at all targets

Target	Year	Time	Experiment	Ref.
Globular Clusters				
M15	2002	0.2	Whipple	[5]
	2006-2007	15.2	H.E.S.S.	[6]
M33	2002-2004	7.9	Whipple	[5]
M32	2004	6.9	Whipple	[5]
NGC 6388	2008-2009	27.2	H.E.S.S.	[6]
Dwarf Satellite Gal	axies			•
Draco	2003	7.4	Whipple	[5]
	2007	7.8	MAGIC	[7]
	2007	18.4	VERITAS	[8]
Ursa Minor	2003	7.9	Vhipple	[5]
	2007	18.9	VERITAS	[8]
Sagittarius	2006	11	H.E.S.S.	[9]
Canis Major	2006	9.6	H.E.S.S.	[10]
Willman 1	2007-2008	13.7	VERITAS	[8]
	2008	15.5	MAGIC	[11]
Sculptor	2008	11.8	H.E.S.S.	[12]
Carina	2008-2009	14.8	H.E.S.S.	[12]
Segue 1	2008-2009	29.4	MAGIC	[13]
	2010-2011	48	VERITAS	[14]
	2010-2013	158	MAGIC	[15]
Boötes	2009	14.3	VERITAS	[8]
Galaxy Clusters				
Abell 2029	2003-2004	6	Whipple	[16]
Perseus	2004-2005	13.5	Whipple	[16]
	2008	24.4	MAGIC	[17]
Fornax	2005	14.5	H.E.S.S.	[18]
Coma	2008	18.6	VERITAS	[19]
The Milky Way cen	tral region			
MW Center	2004	48.7	H.E.S.S.	[20]
MW Center Halo	2004-2008	112	H.E.S.S.	[21]
Other searches				
IMBH	2004-2007	400	H.E.S.S.	[22]
	2006-2007	25	MAGIC	[23]
Lines	2004-2008	112	H.E.S.S.	[24]
	2010-2013	158	MAGIC	[15]
UFOs	-	-	MAGIC	[25]
	-	-	VERITAS	[26]
All-electron	2004-2007	239	H.E.S.S.	[27,28]
	2009-2010	14	MAGIC	[29]
Moon-shadow	-	_	MAGIC	[30]

Single-telescope (MAGIC-I alone) results

Galactic Center

 (17 h) ApJ Lett. 638 (2006) L101

Galaxy clusters • Perseus (25 h) ApJ 710 (2010) 634

Dwarf Galaxies:

 Draco (8 h): ApJ 679 (2008) 428
 Willman 1 (16 h): ApJ 697 (2009) 1299
 Segue 1 (30 h): JCAP 06 (2011) 035

← MD, NIM A 742 (2014)

Best limits from dwarfs in **#1 Segue 1 Deep Scan with MAGIC stereo** high-mass range

- MAGIC decided to perform the longest exposure on a single dSph: Segue 1
- 160 hours of goodquality data between 2011 and 2013.
- Optimized statistical treatment allowed performance boost

Strongest constraints above few hundreds GeV according to channel

MAGIC mono

10⁴

 m_{γ} [GeV]

 m_{γ} [GeV]

This work

Fermi-LAT

Results made • into the PDG

Segue stereo stat treatment

 In all DM searches, we try to measure the same universal parameter, e.g. <σv> through gamma-ray flux:

 $\frac{\mathrm{d}\Phi(\Delta\Omega, E_{\gamma})}{\mathrm{d}E_{\gamma}} = \mathrm{B}_{\mathrm{F}} \cdot \frac{1}{4\pi} \underbrace{\frac{(\sigma_{\mathrm{ann}} \nu)}{2m_{\chi}^{2}} \sum_{i} \mathrm{BR}_{i} \frac{\mathrm{d}N_{\gamma}^{i}}{\mathrm{d}E_{\gamma}}}_{\mathrm{Particle physics}} \cdot \underbrace{\widetilde{J}(\Delta\Omega)}_{\mathrm{Astrophysics}},$

 Different observations of different targets differ in the astrophysical or J-factor

$$\widetilde{J} = \int_{\Delta\Omega} d\Omega \int_{\mathrm{los}} \mathrm{d} s \, \rho^2(s,\Omega).$$

Aim: combine measurements of <σν> from different targets and instruments

The likelihood was prepared so that results from different experiments could be combined

$$\mathcal{L}_{iM}(\langle \sigma v \rangle; J_{i}, \mu_{iM} | \mathcal{D}_{iM}) = \prod_{k=1}^{N} \mathcal{L}_{iMk}(\langle \sigma v \rangle; J_{i}, \mu_{iMk} | \mathcal{D}_{iMk})$$

$$\mathcal{L}_{iF}(\langle \sigma v \rangle; J_{i}, \mu_{iF} | \mathcal{D}_{iF}) = \prod_{k=1}^{NE-bins} \mathcal{L}_{iFk}(\overline{E\Phi}_{k}\langle \sigma v \rangle; J_{i})$$
Generic Instrument *j* and particular target *i*

$$\mathcal{L}_{i}(\langle \sigma v \rangle; J_{i}, \mu_{i} | \mathcal{D}_{i}) = \prod_{i=1}^{N} \mathcal{L}_{ij}(\langle \sigma v \rangle; J_{i}, \mu_{ij} | \mathcal{D}_{ij})$$
input data set

The instrument response functions do not need to be combined, but can be used on individual factor of the likelihood→GREAT ADVANTAGE

RESULTS FROM DIFFERENT INSTRUMENTS AND DIFFERENT TARGETS CAN BE NOW COMBINED TO IMPROVE SENSITIVITY

MAGIC + Fermi combined

- MAGIC: Segue 1 (158 h) and Fermi-LAT: 15 dwarfs (6 years, Pass8)
- **Coherent limits** between 10 GeV and 100 TeV (widest range so far explored)
 - Annihilation limits for DM particle masses below O(1) TeV dominated by Fermi-LAT, above O(1) TeV by MAGIC (and IACTs, in general)
- Effective combination (2x stronger constraints) in the range 300-500 GeV
- Possible to add additional indirect detection instruments (a call was raised by MAGIC)

#2 Search for decaying DM in the Perseus Galaxy Cluster

- The Perseus galaxy cluster is a cool-core cluster expected to be emitting gamma-rays from accelerated hadrons
- MAGIC performed a deep scan during 2012-2016: 300 h
- Clusters are hardly predictable for the DM annihilating case
 - Uncertain baryon feedback
 - Possible large contributions of substructures
- MAGIC is investigating its DM decaying content

Non trivial reconstruction

- The DM decay halo is extended
- A Region of Interest is selected
- The central emission from NGC1275 is excluded
- A background control region is defined
- The likelihood function is built

Decaying DM preliminary results

- Methodology checked on 12h of data in Palacio et al. PoS (ICRC2015)1204
- Sensitivity up to ~8x10²⁵ s: Better results than for 160h with Segue 1
- With whole data sample (~200 h), sensitivity will improve by a factor ~4
- Most constraining decaying DM searches at the TeV

high-mass range

102

PRELIMINARY

#3 Lines

MAGIC, JCAP 02 (2014) 008

• Limits were produced for narrow-band emissions (smoking guns) with 160 hours of Segue1

A look ahead

MAGIC program

MAGIC results into the times of CTA

2/ Even after LHC-14 and LZ, still space left in DM space, **if DM is above TeV**, IACTs are probably the sole player

1/ The galactic center results are more slippery, because the core-cusp effect can be very relevant there. For some years at least dSph results are robust

Conclusions

- MAGIC is hunting DM for a decade now, at first with moderate effort, and now with strong commitment
- Chances of detection are hard to claim: DM can be round the corner or out of reach, no way to know it now
- MAGIC aims at providing the strongest legacy before CTA with well-performing statistical treatment that allow multiple-target combination and multiple-instruments combination
- CTA will improve by a factor of 10 the sensitivity and decrease the energy threshold, this is good for DM!
 - GC will be sampled for long: good but robustness of results will be moderate unless our knowledge improves on the baryon-DM feedback there
 - CTA may not invest time in the early years toward dSphs: MAGIC results will remain the strongest at the TeV for some time

therefore MAGIC legacy could survive for about a decade