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Parker's transport equation (1965)

of

= = R
S —_— v .
5 = (K Vf) (Vd—|- U) VF + 3

wog

f = f(r, R, t) omnidirectional distribution function of cosmic
rays in 3D space r'= (r, 6, ), magnetic rigidity R i time t;
o U - solar wind velocity,

@ Vy - drift velocity,

° Kif - symmetric part of diffusion tensor of cosmic rays,

°o V- (KUS - Vf) - diffusion of cosmic rays,

o (Vy+ U) - Vf - convection due to solar wind and drift in
heliosheric magnetic field,

° g(ﬁ U)g—,’; - energy changes of cosmic rays connected with
divergence of solar wind.
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Stochastic approach to the Parker’s transport equation

@ Is based on the assumption that any random process is independent
of the other processes and single GCR particle moves in a random
way, that could be described as a Brownian motion,

@ The individual particle trajectory is described as a Markov stochastic
process, and the system evolves probabilistically, the particle
coordinates and energy are a random variables,

@ First attempts:

o Jokipii i Owens,1975 solved 1D equation assuming no drift and constant
diffusion coefficient,

@ Zhang, 1999 proposed to bring Parker transport equation to the form of
the Fokker-Planck equation and define the corresponding set of stochastic
differential equations of the first order including the stochastic term and
by this way estimate the probabilistic trajectory of the GCR particle,

@ Gervasi et. al., 1999 presented a 1D spherically- symmetric model of the
GCR transport in the heliosphere applying the stochastic Monte Carlo
simulation to solve the Fokker-Planck equation.

@ Recently e.g.: Strauss et. al., 2011; Kopp et. al., 2012, 2014; Bobik
et. al., 2012, 2016.
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Fokker - Planck equation (FPE)

time-forward

ot _Z ox; + EZ Ox;0x;

i i

time-backward
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Corresponding stochastic Ito differential equation

dF = A; - dt + Bj - dW;

\

N

@ dr- the individual pseudoparticle trajectory in the phase space

° dW,- the Wiener process, commonly written as dW; = Vdt - dw;,
where dw; is the randomly fluctuating term with Gaussian
distribution.
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time-forward vs. time-backward integration

time-forward integration

@ pseudoparticles are
initialized from diverse
boundary points, being for
the GCR particles the
entrance to the heliosphere. Peoudopartices -
After that, their trajectories 05| atthe Earthorot
are traced up to the target ‘
position, e.g. Earth orbit at -
1 astronomical unit (AU), P -

@ a high number of
pseudoparticles has to be ,
initialized to obtain a o
robust statistic, because
plenty of them do not reach
the target position,

The sample pseudoparticles trajectories
within the heliosphere.

@ time consuming.

6/31



time-forward vs. time-backward integration

time-backward integration

@ Pseudoparticles are
initialized from point of
interest (e.g. Earth orbit)
and are traced backward in
time until crossing the
heliospheric boundary (in
this paper this boundary is
assumed at 100 AU),

@ advantage - the number of
'useless’ particles is
reduced.

@ time-backward integration
is much more efficient in
the case of cosmic ray
propagation in the
heliosphere.

Pseudoparticles .
initial pasition
at the Earth orbit

The sample pseudoparticles trajectories

within the heliosphere.
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Value of distribution function f(r, R)

@ the value of the particle
distribution function, f(, R), for
the starting point can be found as
an average value of f;;s(R) for
pseudoparticles characteristics at .

the entry positions rimee
P 1 N 05 atthe Earth orb
f(F,R) = 3 21 fs(R), )
@ where f1;5(R) is the cosmic ray o -
local interstellar spectrum (LIS) for s e

rigidity R of the n'" particle at the
exit/entrance point. e

@ We considered the various forms of "N
LIS (Burger et al., 2000; Webber I
and Lockwood, 2001; Potgieter et. The sample pseudoparticles
al., 2014, Vos and Potgieter, 2015) trajectories within the heliosphere.

and obtained comparable results.
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The Parker equation as the time-backward FPE diffusion

equation
of a2f . 02 f . 0> f . O>f . O2f .
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%900, " Tor " o0 " Pop T POR

Set of SDEs for Parker’s transport equation

dr
do
de
dR

ar-dt+[B-dW],
ag-dt+[B-dW]y
ag - dt +[B - dW],
= ajp - dt.
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Set of SDEs for Parker's transport equation

dr = a7-dt+[B-dw],
do = ag'dt+[B-dW]9
dp = ag-dt+[B-dW],

dR = aj-dt.
vV2a1 0 0
22
B/,J — \/3431 232 B ﬁ 0
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Equation coefficients
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Equation coefficients

Kj = 0(5) + K,-J(-A) 3D anisotropic diffusion tensor containing

symmetric k') and antisymmetric KA part (Alania 1978, 2002
iy y

cos&? cosy? +ﬁ[cos§1 siny? +sin51J sind cosScosy (1 - 8) sinycosS cosy(f—1)
K=K sind cosScos’ Y(l - f) sin’ S cos’ w+ﬂ(sin: Ssin” W+ cos® 5} sin & sinycosydf —1) |+
chEsini,l/chi,U(ﬂfl) sinb‘sinweosw{ﬂfl) sin® w+ Beos’
0 + B siny + B, sind cosy
+ K| thsiny 0 + 3 cosd cosy
+ Gisindcosy F S cosdcosy 0
. . oK i
drift velocity vy ; = —— (Jokipi, 1977)
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Numerical solution of SDEs

Euler- Maruyama method-basic numerical approximation of the

SDE solution

depending on the level of the Ito - Taylor expansion, the order of
convergence -y increases: the Euler- Maruyama method v = 0.5, Milstein
method v = 1 and Stochastic Runge - Kutta- v = 1.5)

1
X1 = XjJrf~dt+g-th+§gog'(de2—dt)+¢

Euler— Murayama

Milstein

Stochastic Runge— Kutta
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Higher order approximation to the numerical solution of
SDEs

1
Xit1 = Xj+f~dt+g-th+§g-g/(dVVJ-2—dt)—i—d)

Euler—Murayama

Milstein

-~

Stochastic Runge— Kutta

¢ = f.g-dZ+ - (ff’ gf”)dt+

2
1
+(f-g’+§g -g")(dW; - dt — dZ;) +

1 1
+58(g 8"+ g’z)(gde — dt)dW;
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Euler-Murayama method for the numerical approximation of
the SDEs solution

where

drEM
dOem
dpem
dRem

riy1 = ri+drem
Oiv1 = 0;i+dOem
vit1 = @i+ doem
Rivi = Ri+dRem

ay - dt + B, - dW,

ag - dt + By, - dW, + By - dWp

ag - dt + By, - dW, + By - dWy + By, - dW,,
ajp - dt

(2)
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for the higher order methods we have (dr):

B 1 B
9 ”(dW2 dt)—&-fB,,a T

(dw? —
27" or

1
dr = a7 -dt+ By dW,—i—EB,r
—_— —————

Euler — Murayama

dt) +o,

Milstein

Stochastic Runge— Kutta
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for the higher order methods we have (d#):

1_ 0By, 2 1 9Bgg 2
d0 = ag - dt+ By, - dW, + Bog - dWp + By, —F (AW — dt) + S Bog — T (dWj — di) +2

Euler — Maruyama

Milstein

stochastic Runge— Kutta

®)
®; = By dzr% + > (a % + 535,869"’28)&2 +
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for the higher order methods we have (dy):

dp = ag-dt+ By dW, + By - dWy + By - AW, +®3 +0y
Euler— Maruyama
Milstein
stochastic Runge— Kutta
dR = aig-dt.

3 = 1B, 202 (dW? — dt) + 1 Bp “52% (WG — dt) + 1 B,y 2522 (dW2 — dt);
®4 = Bor-dZ, 22 11 (ag 2% + 1 B2, 2% )de> + (ag 202t + 1 B2, 2557 ) (dW, -t —

Prop? 92

er)+EBw(Bwaaiw+(aB“") AW — de)aW, + B, dZy 52 +3(as 52 +

2
IB;G%Z;;) 182, 2050 ) (dWy - dt — dZy) + Bwe(ng%jL
(% )2)(1dW§—dt)dWe+BW dZ, 52+ 5 (a0 52 +3 Biq,%;‘-‘)dt +(a0 2522

2
1g? wa 252 )(dW,, - dt dz¢)+§sw(sw%+(a§#) )(gdvv;fdt)dww.
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Initial and boundary conditions

@ initial condition-empty heliosphere

f(0.01AU < r < 100AU, 6, ¢, R,0) = 0, (Pei et. al., 2010)
@ inner reflecting radial boudary

9f =0 at r =0.001 AU,
@ boundary conditions (as in Kopp et. al., 2012)
pi <0 —= p; =i+ 2
w; > 2T = o = p; — 2,
9,~<0—>9,-:—9,-&<p,-:30,-i7r
9,'>7T—>9,'=27T—9,'&g0,'=<p,'iﬂ'
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Results
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Figure Simulated galactic protons rigidity spectra for the pseudoparticles initialized
from position r = 1AU, 6 = 90°, ¢ = 180° for the A > 0 obtained by applying the
Euler-Maruyama, Milstein and stochastic Runge-Kutta methods.
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Figure Simulated galactic protons rigidity spectra for the A> 0 and A< 0 in
comparison with spectra reported by PAMELA (Adriani et. al., 2013).
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Results

Pseudoparticle trajectory A>0,Euler-Maruyama Pseudoparticle trajectory A>0, Euler-Maruyama Pseudoparticle trajectory A>0, Euler-Maruyama
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Figure Trajectories of the pseudoparticles with rigidity of 10 GV for the A > 0
obtained by applying the Euler-Maruyama, Milstein and stochastic Runge- Kutta
methods. The specific colors highlight the trajectories of the sample pseudoparticles,
based on the same Wiener process, traced backward in time from the heliosphere
boundary until they reach the position of Earth.
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Results

06 I Runge-Kutta I Runge-—Kutta

Normalized distribution
Normalized distribution
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Figure The histograms of the particles Figure The histograms of the particles exit
rigidity for the pseudoparticles initialized time for the pseudoparticles initialized with
with rigidity 10 GV from position r = 1AU, rigidity 10 GV from position r = 1AU,
6 =90°, p =180° for the A>0. 6 = 90°, ¢ = 180° for the A>0.
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Figure Latitude vs. longitude distribution of simulated pseudoparticles (protons) for
the A > 0 and A < 0 solar magnetic cycle.
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Model of the Forbush decrease

@ The Forbush decrease (Fd) is called the decrease of the GCR
intensity registered at Earth. This decrease is connected with the
strengten of the Interplanetary Magnetic Field (IMF) and other
parameters in connection with the solar flares or coronall mass
ejecta. (Forbush, 1937).

Da
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Model of the Forbush decrease

@ We assume that during Fd the disturbances in the
interplanetary space cause near the Earth's orbit the gradual
decrease of the diffusion coefficient as the effect of the
increase in the IMF turbulence.

@ We simulate this process by gradual decrease and then gradual
increase of the diffusion coefficient vs. heliolongitude.

o The diffusion coefficient K| of GCR particles has a form:
K| = Ko - K(r) - K(R,v), where Ky = 10?1 cm?/s,
K(r)=1+4+0.5-(r/1AU) .

o K(R,v) = (R/Ro)?>", where Ry = 1GV according to Quasi
Linear theory (Jokipii, 1966; Shalchi, 2009)
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Model of the Forbush decrease

o K(R,v) = (R/Ry)?>7", where Ry = 1GV according to Quasi
Linear theory (Jokipii, 1966; Shalchi, 2009)
@ v is the exponent of the PSD of the IMF.

@ The increase of the exponent v reflects the increase of the
IMF turbulence during the Fd (e.g. Wawrzynczak, Alania,
2008,2010).

e v =1+ 0.25sin(¢x — 90°) for r < 30AU and 90° < ¢ < 270°.

Exponent v

3 B
days
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Model of the Forbush decrease
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Figure Changes of the expected amplitudes of the Fd of the GCR intensity at the

Earth orbit, for the rigidity of 10 GV based on the solutions of the SDEs by

Euler-Maruyama, Milstein and stochastic Runge-Kutta methods.
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Model of the Forbush decrease
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Figure Changes of the expected amplitudes of the Fd of the GCR intensity at the Earth

orbit, for the rigidity of 10 GV based on the solutions of the SDEs by Euler-Maruyama,

Milstein and stochastic Runge-Kutta methods in comparison with the GCR intensity

registered by Apatity and Climax neutron monitors during the Fd on 16-30 Jun 2003.
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Conclusions

@ We presented the numerical solution of the Parker transport
equation by means of a numerical solution of the set of stochastic
differential equations driven by a Wiener process with the strong
order Euler-Maruyama, Milstein, and stochastic Runge-Kutta
methods.

@ The SDEs were integrated backward in time in the heliocentric
spherical coordinates applying the full 3D anisotropic diffusion
tensor.

@ We presented the model of the Forbush decrease of the GCR
intensity obtained based on the stochastic approach to the solution
of the Parker transport equation.

@ We showed that application of the higher order methods (especially
stochastic Runge-Kutta) significantly increased the statistical
accuracy of the numerical solution in the case of the model of the
short-time variations of the GCR intensity.
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