

Mathematisch-Naturwissenschaftliche Fakultät

Institut f. Astronomie u. Astrophysik

"Doing astronomy by looking downward"

Searching for UHE particles from space: The EUSO Program

A. Santangelo*

* Global Coordinator of the JEM-EUSO Collaboration

Speaker: F. Fenu Università degli studi di Torino - INFN Torino

Part I

The EUSO concept: exploring the UHE Universe from space

Fluorescence from SPACE

80

GTU #

Astrophysics and Physics from $E>5.\times10^{19}eV$, focusing at $E\sim10^{20}eV$ (and above!):

Main Science Objectives:

- Explore the sky at the highest energies ever, with unprecedented exposure and uniform coverage → go above 2x10²⁰ eV!
- Perform key anisotropy studies with UHECRs, and study the evolution of anisotropies with energy → *flux, cut-off, angular size…*
- Identify sources in the sky and study their spectra
- Constrain the composition of the UHECRs at the highest energies→messengers discrimination, In<A>

Exploratory objectives:

- discovery of UHE neutrinos (or set limits on their flux)
- discovery of UHE Gamma-rays (or set limits on their flux)
- study of the galactic and local extragalactic magnetic field
- Stringent limits on "Top-Down" mechanisms, on neutrino cross sections, on strangelets
- Atmospheric Science and more
 - Nightglow
 - the transient luminous events (TLEs)
 - meteors and meteoroids
 - Debris studies

Two advantages: 1. Monitored Area

\approx few $\times 10^{12}$ tons

Tilted mode (40°)

2. ISS Orbit → Full sky Coverage...

 4π coverage

http://www.nlsa.com/

Inclination: 51.6° Height: ~400km

JEM-EUSO can observe the arrival direction of EECR very uniformly owing to the nature of the ISS orbit.

Part II

The near term JEM-EUSO, or better EUSO-program:

From paperwork to the real signal, the technique and technological pathfinders

- Near Term (or in operation): a series of scientific-technological steps →
 - optimize our understanding of the observational technique, and
 develop engineering models that could later reduce the mission development schedule
 - EUSO Balloons (First flight completed, New flights In preparation)
 - **MINI-EUSO** (on the ISS, approved by ROSCOSMOS and ASI)
 - EUSO-TA (On-ground, operating)
 - **TUS** (In space, operating)

EUSO-Balloon

EUSO-Balloon

- Test the key technologies and techniques for EUSO
- Test the EUSO EM
- Measure the background UV levels
- Search for background events that mimic air showers
- Detect the fluorescent signals of air showers from near space for the first time

EUSO Balloon first flight (led by CNES)

EUSO-Balloon: was launched on August, 24 2014 from Timmins, (Canada)

EUSO Balloon first flight

EUSO-Balloon: was launched on August, 24 2014 from Timmins, (Canada)

A typical detection

Mapping of the UV-nightglow intensity

SPB Flight under NASA leadership (2017)

Super Pressure Balloon (SPB) Ultra Long Duration flight

First observations of UHECRs from near space: 20 nights

More than 10 events shall be observed

Path of the successful 2015 flight by NASA, from Wanaka NZ

Test if different Background conditions: Ocean, Clouds, Twilight,

Transient atmospheric events

Pathfinders: EUSO-TA

EUSO-TA: *Cross-Calibration tests at the Telescope Array site* in Utah in collaboration with the ICRR in Tokyo and the TA collaboration

EUSO-TA is currently successfully operating taking a wealth of data

TA site, UTAH, Black Mesa

located at Black Rock Mesa FD Station

- Electron Light Source at 100m
- Most nearby SD is at ~3.5 km
- Central Laser Facility ~21km

EUSO-TA results

Average of ~ 150 inclined shots of the Colorado School of Mines laser, 40 km from EUSO-TA (~ 62mJ). Actually tracks are seen up to from 100 km!

Pathfinders: Mini-EUSO

It will be hosted in the Zvezda Module of the ISS. UV transparent Nadir looking window.

Based on a proposal approved by ASI- the Italian Space Agency

Mini-EUSO is included, with the name UV Atmosphere, into the Russian "Stage program of scientific and applied research and experiments"

Flight is scheduled in 2017

UV emissions from night-Earth

- Background from different lightning conditions, moon phases
- Background from different inclinations
- Map of the Earth in UV
- Study of atmospheric phenomena
- Bioluminescence of Animal and vegetal
- Study of meteors and Search for Strange quark matter

Optimization of characteristics and performances of EUSO: obtain info on duty cycle, cloud coverage and UV background

Mini-EUSO scheme: a refractive optics based on two Fresnel lenses images UV light on 1 PDM (36 MAPMTs). A SiPM module (italian ASTRI module) is an option.

TOCM 10 cm

Launch Summer 2017

TUS detector on board Lomonosov satellite

Launched on April 2016!

Aurora light measurements

TUS preliminary results

Part III

The long term EUSO-program:

K-EUSO and EUSO-FF

• Long Term: two mission profiles are being actively studied.

The driving idea is to open the field of the observation from space of UHE particles at the dawn of the new decade!

- K-EUSO mission (Phase A passed, to be delivered to ROSCOSMOS in 2019)
- **EUSO-FF** To be submitted to ESA M5 call (next 5th of October)

- K-EUSO is included into the Space program on the Russian segment of the ISS
- the contract (between RSC Energia and SINP MSU) is in process of signing
- JAXA approved corrective lens production for K-EUSO
- the scientific equipment is in the preliminary design stage: mirror technology and production development, new electronics design and tests

The new challenge: EUSO-FF

EUSO FF stands for EUSO Free Flyer

To be Submitted to ESA in response of the AO for *the fifth cycle (M5) of medium missions* of the Programme "Cosmic Vision 2015-2020".

Submission is early October.

1 ML

0.5 ML

More challenging than EUSO or JEM-EUSO since it will fly 2029!

Parameter	Requirement value	
Exposure at 100 EeV*	10 ⁶ km ² sr yr	←
at 50 EeV*	0.5 ×10 ⁶ km ² sr yr	~
Angular res. at 50 EeV	≤5°	
at 200 EeV	≤2°	
Energy res. at 50 EeV	≤30%	
at 100 EeV	≤20%	
**X _{max} res.	≤100 g/cm²	
*** <x<sub>max> res.</x<sub> at 50 EeV	≤20 g/cm²	
at 100 EeV	≤30 g/cm²	

*For events which can be used for anisotropy studies **For photon and neutrino discriminations *** Determination of the average logarithmic mass

Instrument requirements for the UV telescopes:

Parameter	Requirement value
Operational wavelength	300-400 nm
Field of View	±30°
Effective aperture	≈ 12 m²
Pixel Field of View	≤ 0.06°
*Pixel size on the FS	≈3mm
Optics Throughput	>60%
Time Resolution	2.0 µs
Number of pixels	≈1.x10 ⁶
Detection efficiency	≥40%
Dead Time	<3%

*it depends on the f number of the optics. The value here is for a refractive optics solution

Requirements are preliminary: we are currently studying the case for the M5 proposal

EUSO-FF Mission Requirements

Mission requirements:

Parameter	Requirement value
*Orbit altitude	600÷700 km
Monitored Area	2.8÷3.8 × 10 ⁵ km ²
Pixel size on ground	< 700 m
Mission Lifetime	≥5 yr
Launcher	Arian 62
**Orbit Inclination	52° (TBC)
Duty cycle	≈20%

*Above 700 km the radiation dose strongly increases, at lower altitudes drag effect might become severe.

**The orbit inclination has not yet decided: a polar orbit will go through the auroras, an equatorial orbit will have a not ideal cloud coverage conditions

Ariane 6 Fairing limiting factor

Allows mono-eye solution

Multi eyes difficult within the cost cap of the M5 budget.

Technical solutions: Optics (1)

Two Fresnel lenses, plus a central precision Fresnel lens to cancel chromatic aberration

Materials : PMMA + CYTOP (light)

Large diameter (1.5 m diam.) Fresnel lenses manufactured in Japan by RIKEN

...tested at the University of Alabama (Huntsville) and at MSFC (NASA)

Design of a **mirror optics, based on the Schmidt camera** principle This is the only design allowing wide FOV, up to $\approx 50^{\circ}$, with just 2 optical elements

Smaller F# and therefore smaller focal surface Higher throughput but obscuration

Key issue: deployability!

Courtesy of Carlo Gavazzi Space SpA CARLO GAVAZZI SPACE SPA

CARLO GAVAZ

Conclusions

- The EUSO program *is an essential element of the roadmap* of the UHE Community
- Prototypes and Models of the major elements (Lenses, PDM, DP Unit) have been produced and are being tested to increase the TRLs levels.
- The Pathfinders (EUSO-TA and EUSO-Balloon) are providing exciting technical and science data: *the transition from paper work to prototyping and measurements has been done.*
- Mission concepts are actively studied: *K-EUSO* will open the scientific exploration of the field as a pathfinder, and then
 EUSO-FF is expected to unveil the highest energy sky ever explored.

Thank you.

Contact:

Andrea Santangelo Abteilung Hochenergieastrophysik Sand 1, 72076 Tübingen · Germany Phone: +49 7071 29-76128 Andrea.Santangelo@uni-tuebingen.de

Exposures: refractive and reflective

h=650 km, lifetime 6 years

EBERHARD KARLS UNIVERSITÄT

TÜBINGEN

JEM-EUSO with Dragon (Performance)

Details on the duty cycle and cloud coverage in Adams et al., 2013 and Shinozaki ID0682

Expected annual exposure for different criteria (from Moonless to duty cycle $\eta \sim 25\%$)

$$A_{Ann.Exp.} = (5-9) \times 10^4 linsley$$

This corresponds to (6-10) times what attainable by the Pierre Auger Observatory

T. Mernik ID0577, K. Shinozaki ID0682, A. Guzmán ID0570, F. Fenu ID0611

JEM-EUSO with Dragon (Performance)

Details on the duty cycle and cloud coverage in *Adams et al., 2013 and Shinozaki ID0682*

Angular resolution: it's improved with respect to JEM-EUSO with HTV and meets the requirements.

Expected annual exposure for different criteria (from Moonless to duty cycle $\eta \sim 25\%$)

$$A_{Ann.Exp.} = (5-9) \times 10^4 linsley$$

This corresponds to (6-10) times what attainable by the Pierre Auger Observatory

T. Mernik ID0577, K. Shinozaki ID0682, A. Guzmán ID0570, F. Fenu ID0611

Energy resolution (HTV configuration)

 $\frac{E_{reco} - E_{real}}{E_{real}}$

Events impacting in the central part of the field of view namely in the inner (+/-20,+/-20) km. The geometry has been reconstructed with the slant depth method

The sigma of the R distribution

F. Fenu et al., Exp. Astron. 2014

 $\frac{E_{reco} - E_{real}}{E_{real}}$

Events impacting in the central part of the field of view namely in the inner (+/-20,+/-20) km. The geometry has been reconstructed with the Cherenkov Stamp method

The sigma of the R distribution

F. Fenu et al., Exp. Astron. 2014

F. Fenu et al., Exp. Astron. 2014