

XXV ECRS 2016 Torino - Italy

Measurement of the depth of maximum of air-shower profiles and its composition implications

The Pierre Auger Collaboration

Av. San Martin Norte 304, 5613 Malargüe, Argentina http://www.auger.org/archive/authors_2016_08.html Presenter: Vitor de Souza (University of Sao Paulo-Brazil)

background

Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory. I. Measurements at Energies above 10^{17.8} eV **arXiv:1409.4809** PHYSICAL REVIEW D 90, 122005 (2014)

> Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory. II. Composition Implications **arXiv:1409.5083** PHYSICAL REVIEW D 90, 122006 (2014)

ICRC 2015: **arXiv: 1509.03732** Speakers: I. Valiño, A. Porcelli, A. Yushkov, A. di Mateo

outline

outline

detector stability

24 FD (0-30 deg): 12/04 - 12/12 3 HEAT (30-60 deg): 06/10 - 08/12

$evt \qquad E > 10^{18} eV$	events	$\varepsilon~[\%]$
pre-selection:		
air-shower candidates	2573713	-
hardware status	1920584	74.6
aerosols	1569645	81.7
hybrid geometry	564324	35.9
profile reconstruction	539960	95.6
clouds	432312	80.1
$E > 10^{17.8} \text{ eV}$	111194	25.7
quality and fiducial se	<i>lection:</i>	
P(hybrid)	105749	95.1
X_{\max} observed	73361	69.4
quality cuts	58305	79.5
fiducial field of view	21125	36.2
profile cuts	19947	94.4

What are the geometries that allows the measurement of the entire Xmax distribution ?

study how <Xmax> changes with FOV

study how <Xmax> changes with FOV

From the data

study how <Xmax> changes with FOV

valid geometries ?

valid geometries ?

this is the valid geometry that assures unbiased Xmax distributions

events to be analyzed

Target: analyze the set of selected events in order to guarantee:

minimum bias

maximum statistical significance

control over systematic uncertainties

verification / cross-checks

complete data analysis

everything published

everybody can use Auger data for comparison to models and other measurements

outline

 $\lg(E_0/eV) = 18.27 \pm 0.04 \,(\text{stat.}) \,{}^{+0.06}_{-0.07} \,(\text{sys.})$

outline

Warning

In the following slides the interpretation presented depends on hadronic interaction models

CONEX v4r37 EPOS-LHC QGSJETII-04 Sibyll 2.1 SimProp or CRPropa: THALYS Geant4

EPOS-LHC (Variance of ln A)

Purity of the sample

 $10^{18.5} < E < 10^{19} eV$

data	-0.125 ± 0.024 (stat)			
	Epos-LHC	QGSJetII-04	Sibyll 2.1	
p	0.00	0.08	0.07	
He	0.08	0.15	0.15	
0	0.09	0.15	0.14	
Fe	0.08	0.12	0.12	

from moments to full distribution

example of different distributions with the same moments

fitting abundances: Only Xmax distributions simulated air shower including the detector response

ON 26

proton + helium + nitrogen + iron

acceptable/good agreement with the data

proton + helium + nitrogen + iron

final remarks

- data
 - all information is public: distributions, resolution, systematics and acceptance
 - largest statistics with controlled systematics
- Xmax moments
 - clear break @ log (E/eV) = 18.27
 - showers with E > 10^{18.27} eV are shallower and fluctuate less than proton simulations

final remarks

- $< \ln A > -$ EPOS-LHC, QGSJet II-04 and Sibyll 2.1
 - $E < 10^{18.3} eV$: < In A > decreases with increasing energy
 - $E > 10^{18.3} eV$: < In A > increases with increasing energy
 - $\sigma^2(\ln A)$ and S1000 analysis: no pure composition from $10^{18.5}$ to 10^{19} eV
- abundance fits EPOS-LHC, QGSJet II-04 and Sibyll 2.1
 - mixed flux: light + intermediate + heavy is favored
 - proton flux decreases with increasing energy
 - no significant amount of iron nuclei is detected