

Fabio Gargano – INFN Bari

on behalf the DAMPE collaboration

The physics goals

• High energy particle detection in space

- Study of the cosmic **electron** and **photon** spectra
- Study of cosmic ray **protons** and **nuclei**:
 - spectrum and composition
- High energy gamma ray astronomy
- Search for **dark matter** signatures in lepton spectra
- Exotica and "unexpected", e.g. GW e.m. counterpart in the FoV

Detection of 10 GeV - 10 TeV e/γ 50 GeV - 500 TeV protons and nuclei with excellent energy resolution, tracking precision and particle identification capabilities

The collaboration

• CHINA

- Purple Mountain Observatory, CAS, Nanjing
 - Prof. Jin Chang (Principal Investigator)
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou

• ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- SWITZERLAND
 - University of Geneva

The detector

STK: 6 tracking double layer + 3 mm tungsten plates. Used for particle track and photon conversion

PSD: double layer of scintillating strip detector acting as ACD

> NUD: it's complementary to the BGO by measuring the thermal neutron shower activity. Made up of boron-doped plastic scintillator

BGO: the calorimeter made of 308 BGO bars in hodoscopic arrangement (~31 radiation length). Performs both energy measurements and trigger

Comparison with AMS-02 and FERMI

	DAMPE	AMS-02	Fermi LAT	
e/γ Energy res.@100 GeV (%)	1.5	3	10	
e/γ Angular res.@100 GeV (deg.)	0.1	0.3	0.1	
e/p discrimination	10 ⁵	10 ⁵ - 10 ⁶	10 ³	
Calorimeter thickness (X ₀)	32	17	8.6	
Geometrical accep. (m ² sr)	0.29	0.09	1	

Test beam activity @ CERN

• 14days@PS, 29/10-11/11 2014

- e @ 0.5GeV/c, 1GeV/c, 2GeV/c, 3GeV/c, 4GeV/c, 5GeV/c
- p @ 3.5GeV/c, 4GeV/c, 5GeV/c, 6GeV/c, 8GeV/c, 10GeV/c
- π-@ 3GeV/c, 10GeV/c
- γ @ 0.5-3GeV/c
- 8days@SPS, 12/11-19/11 2014
 - e @ 5GeV/c, 10GeV/c, 20GeV/c, 50GeV/c, 100GeV/c, 150GeV/c, 200GeV/c, 250GeV/c
 - p @ 400GeV/c (SPS primary beam)
 - γ @ 3-20GeV/c
 - μ@150GeV/c,
- 17days@SPS, 16/3-1/4 2015
 - Fragments: 66.67-88.89-166.67GeV/c
 - Argon: 30A- 40A- 75AGeV/c
 - Proton: 30GeV/c, 40GeV/c
- 21days@SPS, 10/6-1/7 2015
 - Primary Proton: 400GeV/c
 - Electrons @ 20, 100, 150 GeV/c
 - γ @ 50, 75 , 150 GeV/c
 - μ @ 150 GeV /c
 - π+ @10, 20, 50, 100 GeV/c
- 6days@SPS, 20/11-25/11 2015
 - Pb 30 AGeV/c (and fragments)

BGO Test beam preliminary results: ions

The launch: Dec 17th 2015, 0:12 UTC

Dec 24th 2015: HV on 330 GeV electron

Dec 24th 2015: HV on **12 GeV proton**

Dec 24th 2015: HV on **1.3 TeV Carbon**

Total Energy: 1306.882750 GeV

Direction: Theta: 26.8 deg, Phi: -45.9 deg

Trigger rate in orbit

Some on-orbit performance plot BGO "mip" peak **STK space resolution** Nomalized Counts 0.0 MC-Digi Data 140, On-Orbit Data STK On-Orbit Alignment (Preliminary) RMS of double-gaus fit [microns] 0.008 120 Measurements on ground 0.006 100 THEAST 0.004 80 0.002 60 40 100 200 300 400 500 600 Energy(MeV) $\sim 40 \ \mu m \ resolution$ dx [W.E.]

MIPs Peak Shift [%]

-80

-60

2

Vertical rigidity cut-off

The "mip" (i.e. not showering particle) peak shift according to the latitude due to the geo magnetic cut-off. Very good energy resolution !

30

40

Track inclination [deg]

50

60

70

0L

10

Electron identification

Background form side, ...

p ar p

Other kind of particle identification strategies are ongoing

All-electron spectrum

- Measure the all-electron flux up to about 10TeV
- Measure with high accuracy the sub-TeV region and the possible cut-off around one TeV
- Detect structures in the spectrum due to nearby sources and/or DM induced excesses
- Detect anisotropies at high energy

Identifying protons and nuclei with PSD On-Orbit data

(4.5 days)

Charge measurement is also done with **STK** and (with lower precision) by the **BGO bars** (see slide 8). Analysis on going.

Charge resolution is Z dependent and ranges from 0.2 to 0.4

Protons and nuclei: DAMPE expected flux in 3 years

Photons

2(

Summary

• The detector

- Large geometric factor instrument (0.3 $m^2 sr$ for p and nuclei)
- Precision Si-W tracker (40 μ m spatial resolution, 0.2° angular resolution)
- + Thick calorimeter (32 X_0 , σ_E/E better than 1% above 50 GeV for e/y , ~35% for hadrons)
- "Multiple" charge measurements (0.2-0.4 energy resolution)
- e/p rejection power > 10^5 (topology alone, plus neutron detector)

Launch and performances

- Successful launch on Dec 17, 2015
- On orbit operation steady and with high efficiencies
- Absolute energy calibration by using the geomagnetic cut-off
- Absolute pointing cross check by use of the photon map

• Physics goals

- Study of the cosmic electron and photon spectra
- Study of electron anisotropy and nearby sources contribution
- Study of cosmic ray protons and nuclei: spectrum and composition
- Precise measurement of CR discrepant hardenings and spectral indexes
- High energy gamma ray astronomy
- Search for dark matter signatures in lepton spectra
- The "unexpected": GW electromagnetic follow up in FoV

Back up slides

FM final integration (06/2015)

The Silicon Tracker (STK)

- \bullet 48 μm wide Si strips with 121 μm pitch
- $(95 \times 95 \times 0.32 \text{ mm}^3)$ Silicon Strip Detectors (SSD) with 768 strips
- One ladder composed by 4 Silicon Strip Detectors (SSD)
- 16 Ladders per layer (76 cm \times 76 cm)
- 12 layers (6x + 6y)
- Analog Readout of each second strip:
 •384 channels / SSD- Ladder

STK Silicon Sensors

- Single-sided Silicon strip detectors produced by Hamamatsu
 - + 9.5 x 9.5 cm², 768 strips, 121 μm pitch (AGILE geometry)
 - 320 μm thick (AGILE: 410 $\mu m)$
 - Resistivity 5-8 kΩ, V_{fd} 10-80 V
 - Total strip capacitance 2.1 pF/cm
- 150 SSDs for EQM (Engineering and Qualification Model)
- 865 SSDs for FM (Flight Model)
 - Excellent quality
 - <I_{leak}> ~120 nA @150V (spec: <900 nA)
 - $V_{fd} < 50 V$
 - Very few bad channels
 - Cut precision: ~ few μm

STK Readout Electronics

- Readout every other strip, readout pitch 242 μm
- ASIC: VA140 from IDEAS, updated version of VA64hdr of AMS-02
 - Low power (0.3 mW/channel) and large dynamic range (200 fC)
 - Analog readout
 - Charge measurement
 - Better position resolution with charge sharing
- Tracker Front-end Hybrid (TFH)
 - Thin bias circuit integrated with a PCB housing 6 ASICs, and a readout cable ("pigtail")
 - Support structure for the SSDs
 - Vias and copper bands for heat transfer

to form a ladder ~97%) <10 μm

STK Silicon ladders

- Precise jigs to assemble (align, glue and bond) 4 sensors to form a ladder
 - require 20 μ m alignment precision \Rightarrow achieved, most (~97%) <10 μ m

Linearity top side

STK Tracker planes

• 16 ladders glued to each surface of the support trays (except top and bottom)

Ladder leakage currents at 80V

Leakage current of 192 ladders after plane assembly at 80 V The excellent quality of the silicon sensors maintained through the ladder production and plane assembly processes!

Assembled planed are measured with metrology machine, flatness $\sim 100 \ \mu m$

The Silicon Tracker

STK resolution after alignment (**BT Data**)

The Calorimeter

- 14 layers of 22 BGO bars
 - Dimension of BGO bar: $2.5 \times 2.5 \times 60 \text{ cm}^3$
 - 14 hodoscopic stacking alternating orthogonal layers
 - depth ${\sim}32 \rm X_0$
- Two PMTs coupled with each BGO crystal bar in two ends

The Calorimeter -2

Carbon Fiber

BGO crystal installation

PMT installation

Cable arranging

Cable connector

BGO Cal

The PSD and the NUD

- 1.0 cm thick ,2.8cm wide and 82.0 cm long scintillator strips
- staggered by 0.8 cm in a layer
- 82 cm × 82 cm layers
- 2 layers (x and y)

• 4 large area boron-doped plastic scintillators (30 cm × 30 cm × 1 cm)

F.Gargano - DAMPE space mission: first data - ECRS :

STK noise behavior in orbit

• Noise of the bulk significantly lower than on-ground

STK preliminary charge ID

7 September 2016

36/28

Protons and nuclei spectra

CREAM fluxes

DAMPE 3 years simulation assuming Horandel fluxes

