

Status of the XENON1T experiment

Dott. Marco Garbini, Bologna University on behalf of the XENON Collaboration

XXV European Cosmic Ray Symposium

4-9 September 2016 Torino Europe/Rome timezone

ECRS 2016

The XENON Collaboration

10 countries, 21 institutions,130 scientists

The XENON Program @ LNGS

Direct Dark Matter Search using a dual phase Xenon TPC XENON100 XENON1T XENONnT XENON10 (2008~2016) (2015-) (2018+)(2005~2007) Time Target Total: 161 kg Total: 3.2 **Total:** ~ 8 t? Total: 25 kg Target: 2 t Target: 62 kg Target: 14 kg **Target:** ~ 6 t? ~ 10⁻⁴⁷ cm² Limit ~ 10⁻⁴³ cm² Limit ~ 10⁻⁴⁵ cm² Sensitivity ~ 10⁻⁴⁸ cm² Sensitivity

Large mass number A (131) (Interaction cross section < A²)

- +50% odd isotopes (¹²⁹Xe, ¹³¹Xe) for Spin-Dependent interactions
- *No long-lived radioisotopes, Kr can be reduced to ppt levels
- +High stopping power, i.e. active volume is self-shielding
- +Efficient scintillator (178 nm)
- + Scalable to large target masses

+Electronic recoil discrimination with simultaneous measurement of scintillation and ionization

How we use Xenon

XENON1T

First ton scale Xe dual phase TPC for direct dark matter search

Total Xe mass: 3.2 t

Active Xe in the TPC: 2 t, readout by 248 PMTs

Water Cherenkov muon veto

 Cooling/purification/distillation/storage systems designed to handle up to 10 tonne of Xe. Upgrade to a larger detector (XENONnT) planned for 2018

Expected sensitivity 1.6×10⁻⁴⁷ cm² @ 50 GeV WIMP 2ty (100 times more sensitive than XENON100)

The XENON1T

Water Shield & Muon Veto

- The XENON1T cryostat is immersed in a tank filled with 700 tonnes of pure water
- Reflective film foil on inner surface
- Instrumented with 84 high-QE, 8" PMTs to detect Cherenkov light
- **cosmogenic-induced background <0.01 events/y**
- The muon veto has been commissioned in March 2016.

E. Aprile et al., JINST 9 (2014) 11006

First Muons

ECRS 2016, Torino, 8 Sept. 2016

Cryo/Storage/Purification

◆248 PMTs: 3" Hamamatsu R11410

Custom designed for low radioactivity 34.5% average QE @ 175 nm

Low T tests and characterisation prior to installation

In situ calibration

E. Aprile et al., Eur. Phys. J. C75 (2015) 11, 546

ECRS 2016, Torino, 8 Sept. 2016

The TPC

- ♦ 96 cm drift x 96 cm diameter TPC
- Filled with 2 t of high-purity Xenon (active) liquid target)
- ◆ 248 low radioactivity PMTs

Dott. Marco Garbini, Bologna University

Commissioning ongoing

The XENON1T Time Projection Chamber and associated cryogenic system are currently under commissioning.

Detector is responding to radiation as expected, with both charge and light being detected. The LXe is being continuously purified to reach the desired charge yield at the applied field.

First gamma ray spectrum (Cs-137 external)

1000

800

Entering Low Background mode

MC:Expected Electronic Recoil background

Eur. Phys. J. C (2015) 75: 546. XENON Collaboration, JCAP04 (2016)027.

From Materials

Extensive screening campaign

Intrinsic

- Output of natKr (achieved in distillation column tests)
- 10 μBq/kg ²²²Rn (estimation based on Rn emanation measurements)

1 – 12 keVee, 1t fiducial, before ER discrimination

Source	Background (evts/y)
Materials	0.07
⁸⁵ kr	0.05
²²² Rn	1.4
¹³⁶ Xe	0.02
pp+ ⁷ Be neutrinos	0.08

~ 1.62 evts/t/y after discrimination

MC:Expected Nuclear Recoil background

Eur. Phys. J. C (2015) 75: 546. XENON Collaboration, JCAP04 (2016)027.

Source	Background (evts/y)
Radiogenic	0.22
Muon-induced neutrons	<0.01 (Muon Veto ON)
Neutrinos	0.23

~ 0.45 evts/t/y after Discrimination

Total expected background (ER+NR) ~ 2 evts/t/y Total expected for WIMP mass~100 GeV (σ~ 10⁻⁴⁷ cm²) ~ 2-3 evts/1t/yr

Expected Sensitivity

Conclusions

★XENON1T, the largest two phase Xenon TPC ever built, is starting operations

The Detector is filled with 3.2 tonnes of Xenon

The commissioning demonstrated that all the systems are behaving has expected

First studies are promising

Now in "low-background" commissioning

+ First DM data expected in fall 2016

ECRS 2016, Torino, 8 Sept. 2016

Next..nT

The total mass of Xenon will be > 7 t.

The systems developed for XENON1T can be used to operate XENONnT: Water Tank, Muon Veto, support structure, Cryogenics and Purification systems, LXe storage and recovery system.

The inner cryostat number of PMTs (~ 200 more) and TPC will be modified

First look at Background

Background studies started

Detector filled with LXe

No Electric field applied

No shielding

Systems:Some Details

