

Review on extragalactic cosmic rays detection

Mariangela Settimo

Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE) CNRS-IN2P3 & Institute Lagrange de Paris

European Cosmic Ray Symposium, Turin, 4-6 September 2016

ECRS 20

The ultra-high-energy regime

The ultra-high-energy regime

The ultra-high-energy regime

Propagation effect or source exhaustion?

Auger 2015, best-fit mixed comp.

Propagation effect or source exhaustion?

2. Limitation of the maximal energy at the source

mixed composition $E_{\rm Z}^{\rm max} \propto Z \times E_{\rm p}^{\rm max}$

How to discriminate the two scenarios?

Energy Spectrum features

increase statistics, pile-up for the GZK scenario

- Mass composition (in the GZK region)
- Observation of cosmogenic photons/neutrinos specific signature of GZK process (or new physics)
- Anisotropy

small scale in case of a light composition (see next talk)

OUTLINE

Detection techniques,

experiments in operation and some recent results

How do we observe ultra-high-energy cosmic rays?

Extensive-Air-Showers and Ground-based detectors

Extensive Air Showers: observables

Using the atmosphere as a calorimeter

Evolution of the EM cascade

Calorimetric Energy

 $E \propto \int \frac{dE}{dX} dX$

Maximum of the EAS (X_{max})
Mass composition

Particle density at ground Energy

Number or muons Hadronic component, Mass

Dependence on EAS simulations

Detection techniques

Using the atmosphere as a calorimeter

dElax

max

atmospheric depth (X)

New techniques (II) (See parallel session)

Fluorescence Telescopes

longitudinal shower development calorimetric energy 10-15% duty cycle atmospheric monitoring

Surface array detector

Particle density at ground 100% duty cycle dependence on EAS models

10

New techniques (See Tuesday session)

primary

cosmic rays

Two observatories for UHECRs

Pierre Auger Observatory

Malargue, Argentina, **3000 km²**, 1400 m a.s.l. since 2004

One in each hemisphere: different skies observed!

Telescope Array Project

The Pierre Auger Observatory

70

60

50

40

10

1600 SD on 1.5 km grid 27 telescopes in 5 buildings atmospheric monitoring systems

The hybrid concept

Energy calibration with hybrids

Dienstag, 27. August	13 Auger [%]	TA [%]
Atmosphere	3.4-6.2	11
Detector calib.	9	10
Reconstruction	6.5 - 5.6	9
Stability of E scale	5	-
Invisible energy	3 - 1.5	5
Fluorescence Yield	3.6	11
Total	14	21

SD energy calibrated using a sub-set of hybrid events having SD and FD independent reconstructions

Energy spectrum

Mass Composition

Hadronic physics

Cosmogenic photons and neutrinos Anisotropy (see next talk)

Energy spectrum above 10¹⁸ eV

	Auger	Telescope Array
Eankle [EeV]	$4.82 \pm 0.07 \pm 0.8$	5.2 ± 0.2
E _{1/2} [EeV]	$42.1\pm1.7\pm7.6$	60 ± 7
γ ₁ (E < E _{ankle})	$3.29 \pm 0.02 \pm 0.05$	3.226 ± 0.007
$\gamma_2 (E > E_{ankle})$	$2.60 \pm 0.02 \pm 0.1$	2.66 ± 0.02

Energy spectrum: a comparison

- Ankle position in good agreement
- Flux suppression at different energies (different skies?)

Are Northern and Southern skies different?

Energy spectrum

Mass Composition

Hadronic physics

Cosmogenic photons and neutrinos

Anisotropy

Longitudinal Shower Profile

Shower profiles for varying primaries (or hadronic models) differs in <Xmax> and its dispersion

Mass composition from the first two momenta of X_{max} distribution

21

Mass composition from Xmax distribution

Data: Longitudinal profile fit by a Gaisser-Hillas function Uncertainties on Xmax measurements < 20 g/cm² (depending on the energy and specific FD performance)

Mass composition from Xmax

Change in composition and break point at E ~10^{18.3} eV

Proton dominant composition

Similar conclusions from $<X_{max}>$ and $\sigma(X_{max})$ Flux suppression region not covered by FD measurements

Are Auger and TA results in tension?

Auger & TA joint work

1) Construct a model of X_{max} distribution describing the Auger data 2) Simulate and reconstruct the "Auger-mix" with TA analysis chain

TA uncertainties too large to distinguish between Auger-mix and light composition

Are the moments of the X_{max} distribution enough?

Same X_{max} and $\sigma(X_{max})$ but different mixtures fit the X_{max} distribution with a *N-components model*

Inferring the fraction of chemical components

Fit of the X_{max} distribution with simulation templates (N-components)

The Pierre Auger Coll., Phys. Rev. D 90, 122006 (2014)

Energy spectrum

Mass Composition

Hadronic physics

Cosmogenic photons and neutrinos

Anisotropy

Proton-air cross-section

Test of air-shower models at UHE

The Pierre Auger Collab., Phys. Rev. D 91, 032003 (2015) L.Collica for the Auger Collab., ICRC 2015

Energy spectrum

Mass Composition

Hadronic physics

Cosmogenic photons and neutrinos

Anisotropy

Cosmogenic neutrinos...

The Pierre Auger Collaboration, PRD 91 (2015)

Cosmogenic neutrinos...

The Pierre Auger Collaboration, PRD 91 (2015) Cosmogenic v models Neutrino single flavour limits (90% C.L.) p, Fermi-LAT best-fit (Ahlers '10) 10⁻⁵ p, Fermi-LAT 99% CL band (Ahlers '10) p, FRII & SFR (Kampert '12) IceCube 2013 (x 1/3) Fe, FRII & SFR (Kampert '12) Auger (2013) p or mixed, SFR & GRB (Kotera '10) E² dN/dE [GeV cm⁻² s⁻¹ sr⁻¹] 01 10 -01 Waxman-Bahcall '01 ANITA-II 2010 (x 1/3) RD 91 2015) 092008 10⁻⁹ E, [eV]^{10¹⁹} 10¹⁷ 10¹⁸ 10²⁰ 10²¹ Photon limits 95% C.L. n flux E > E₀ [km⁻² yr⁻¹ sr⁻¹] -01 -01 -01 Waxman-Bahcall landmark reached \checkmark cosmogenic model with pure p composition at the source and strong evolution disfavored 10^{-1,} TA 2015 (preliminary) ₩ **SD 2008** T

The IceCube Collaboration, arXiv:1607.05886

A proton dominant composition scenario is disfavored if sources of UHECRs have an evolution stronger than SFR (for zmax = 2)

... and photons

UHE photons observed from EAS development (deep Xmax, shower particles content)

$$F_{\gamma}(E_{\gamma} > E_{0}) = \frac{N_{\gamma}}{\langle \varepsilon \rangle}$$

✓ top-down models disfavored✓ GZK flux region within reach

Energy spectrum

Mass Composition

Hadronic physics

Cosmogenic photons and neutrinos

Anisotropy (see next talk)

Anisotropy at UHE (E ≥ 55 EeV)

No significant deviation from isotropy at small angular scale. Maximum significance at intermediate angular scales.

Telescope Array

Max significance: 5.1 σ (pre-trial) post-trial: 3.4 σ E_{thr} > 57 EeV, ψ = 20°

 $(N_{ODS} = 24, N_{DG} = 6.88)$

K.Kawata for the Telescope Array Collab., ICRC 2015

Pierre Auger Observatory

Largest excess: pre-trial 4.3 σ , 69% post-trial probability)

 $E_{thr} > 54 \text{ EeV}, \psi = 12^{\circ},$ $N_{obs} = 14 / N_{bg} = 3.23$

The Pierre Auger Collaboration, ApJ, 804 , 15, (2015) J. Aublin for the Auger Coll., ICRC 2015

Major results obtained and new questions opened

What have we learnt?

More answers in the short term?

TA extension to ~ 3000 km²

- Hot-spot at > 5 σ
- Statistics for mass composition and energy spectrum at highest energies

AugerPrime

- Muon content and mass composition
- Origin of the flux suppression
- Search proton flux (test astronomy for future detectors)
- Hadronic models and EAS physics

Summary and Outlook

- Current detectors have lead to high-quality observations
 - Unexpected results and new questions in astrophysics and particle physics
- Lack of statistics, air-shower dependence the major challenges for extragalactic cosmic rays
 - Upgrades of the current experiments decisive in the next few years
- Multi-messenger approach needed for a coherent picture
- New techniques and ambitious projects to follow in the future

Backup

Examples for Auger, similar systems for Telescope Array

Astrophysical interpretation of the results

Combined fit of spectrum and mass composition

Fit of the mass assuming pure proton at source

Mass composition measurements (Auger)

Depth of shower maximum (Xmax) proportional to the InA.

Mass inferred from the first two moments of the Xmax distribution

Break-point @ E ~10^{18.3} eV: Mass composition from intermediate to light primaries at low energy and to intermediate/heavy at high energy

Detection of UHE neutrino

v selected as inclined showers with large em component (time spread of SD signals)

down-going

all v flavor

Low zenith (65°,75°) contrib. to total evt rate: 23% High zenith (75°,90°): contrib. to total evt rate: 4%

• up-going (Earth-Skimming)

 v_{τ} flavor Earth-Skimming (90°, 95°) contrib. to total evt rate 73% v identification applied "blindly" to data: 01/2004 - 12/2012

No candidates found!

Search for photons with Auger

SD events: RADIUS OF CURVATURE AND RISE TIME OF THE SIGNAL IN THE SD

- Ethr: 10, 20, 40 EeV
- Zenith: 30 60° (full efficiency range)
- Principal component analysis
- "a-priori" cut at 50% of photon selection efficiency
 - no candidates found

The Pierre Auger Coll., Astrop. Phys. 29 (2008) 243

Hybrid events:

- ▶ E_{thr}: 1, 2, 3, 5, 10 EeV
- Zenith: 0 60°
- Fisher analysis combining SD and FD information
- a-priori cut at 50% photon efficiency, > 99% bkg rejection(depending on energy)
- ► FD duty cycle of ~ 10-15%

6, 0, 0, 0, 0 candidates (compatible with bkg)

Inclined Events ($60 < \theta < 80$)

Vertical events ($\theta < 60$)

Anisotropy at UHE (E > 57 EeV)

TA Low Energy Extension (TALE)

Auger: Extension to low energies

slant depth [g/cm²]