

Overview on Radio Detection of Air Showers with focus on LOPES, Tunka-Rex, and AERA

Frank G. Schröder

Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany

KIT - The Research University in the Helmholtz Association

Advantages of radio technique

Accurate measurement of energy and X_{max} around the clock

2 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

3 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Emission mechanisms

4 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Conical radio emission with asymmetric footprint

CoREAS simulations

By T. Huege et al., ARENA2012

5 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Do simulations describe reality?

Correction Correcti

frank.schroeder@kit.edu Institut für Kernphysik

6 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

1st Answer: How well do we understand the radio emission?

To a level of 10-20%

- better than for muon content of air-showers
- similarly good as fluorescence detection, but various systematics are not yet extensively studied
- Open questions for becoming even better
 - What is the impact of atmospheric humidity?
 - Is the proportionality with geomagnetic field exact?
 - How exactly behaves the emission for near-horizontal showers?

Experiments: First Detection

Qualitative features discovered 50 years ago, but measurements lacking accuracy

Jelley et al Nature 1965, R. A. Porter MSc Thesis 1967

8 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Radio Detection of Cosmic Rays

06 September 2016 ECRS 2016, Torino

9

Designs of modern radio arrays (mostly externally triggered).

LOPES (30)

LOFAR - LBA outers

◄

◄

Compilation by A. Zilles

06 September 2016 ECRS 2016, Torino

10

Radio Detection of Cosmic Rays

Detectors: antennas

Many working solutions with only slight differences in

- threshold (typical 10¹⁷ eV) and frequency band (typical 30-80 MHz)
- accuracy (systematic uncertainties, e.g., due to ground conditions)

11 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Reconstruction of shower parameters

Direction

example: LOPES

Energy

example: AERA and others

Shower maximum

example: Tunka-Rex (for LOFAR see next talk)

Interferometric beamforming at LOPES

Cross-correlation of traces after time shift according to arrival direction
Direction precision < 0.7° (by comparing LOPES to KASCADE)

13 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Auger Engineering Radio Array

14 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Auger Engineering Radio Array

- 153 autonomous stations on 17 km² Auger Engineering Radio Array
 - LPDA antenna
 - Butterfly antenna

Auger Muon and Infill Ground Array

Surface Detector

06 September 2016

ECRS 2016, Torino

- with Muon Detector
- 750 m

frank.schroeder@kit.edu Institut für Kernphysik

Radio Detection of Cosmic Rays

15

Energy reconstruction by AERA

16 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Similar energy precision by other experiments

17 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Comparing energy scales via radio

Tunka-Rex + LOPES Colls., submitted to PLB

18 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

19 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

20 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

2nd Answer: What is the accuracy for shower observables?

- Accuracy competitive to fluorescence technique
 - direction < 0.7°
 - energy < 20% (precision + scale)</p>
 - X_{max} < 20 g/cm² (with high antenna density)
- Next steps currently under investigation
 - Can we reach an energy accuracy of 5-10%?
 - Can we achieve 20 g/cm² X_{max} resolution with sparse arrays?
 - Can we exploit composition sensitivity beyond X_{max}?

3rd Answer: What ideas and plans are there beyond X_{max}?

- Highest apertures for 10²⁰ eV
 - huge arrays for inclined showers, satellites, the Moon
 - draw backs: poor energy resolution and composition sensitivity
 - science case, if composition at 10²⁰ eV is not mixed, but either pure proton or pure iron
- Neutrino search above 10¹⁶ eV
 - radio arrays in and on ice ARA, ARIANNA
- Ultimate precision around 10¹⁷ eV
 - the low-frequency core of the Square Kilometer Array (SKA)

Cosmic-Ray detection by ANITA

23 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

Huge footprint for inclined showers

Enables large-scale, sparse antenna arrays for reasonable costs

24 06 September 2016 ECRS 2016, Torino

Radio Detection of Cosmic Rays

Composition sensitivity for inclined showers

Only radio emission + muons survive for inclined showers

Complementary information on shower \rightarrow primary particle type

Radio Detection of Cosmic Rays

26 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

The Square Kilometer Array: ultra high precision

Phase 1: ~ 60,000 antennas on ½ km²
Scintillator array planned for E > 10¹⁶ eV

27 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays

frank.schroeder@kit.edu Institut für Kernphysik

SQUARE KILOMETRE ARRAY

Conclusion

- Significant progress in last years
 - radio is on the way to a standard technique
 - emission understood to at least 10 20 % accuracy

Competitive accuracy for air shower parameters

- direction < 0.7°
- energy < 20% (precision + scale)</pre>

X_{max} < 20 g/cm² (with high antenna density)

Radio ideal for particle-detector arrays at E >10¹⁷ eV

enhancement of accuracy for energy + composition

more in arXiv: 1607.08781

28 06 September 2016 ECRS 2016, Torino

Backup

LOPES setup (map of 2009)

- 30 dipole antennas
 - 40 80 MHz, east-west / north-south
- Trigger by KASCADE

Relative strength of Askaryan effect

31 06 September 2016 ECRS 2016, Torino

32 06 September 2016 ECRS 2016, Torino Radio Detection of Cosmic Rays