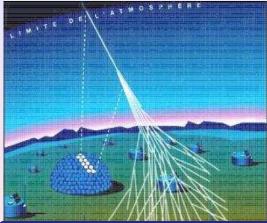
LHC results & hadronic interaction models


Sergey Ostapchenko Frankfurt Institute for Advanced Studies

Torino, September 5-9, /

ECRS-2010

arXiv: 1608.07791, 1601.06567, 1402.508


Cosmic ray studies with Extensive Air Shower technique

ground-based observations

- primary CR energy \iff charged particle density at ground
- CR composition \iff muon density ρ_{μ} at ground

Cosmic ray studies with Extensive Air Shower technique

measurements of EAS fluorescence light

- primary CR energy \iff integrated light
- CR composition \iff shower maximum position X_{max}

Cosmic ray studies with Extensive Air Shower technique

CR composition studies - most dependent on interaction models

• e.g. predictions for X_{max} : on the properties of the primary particle interaction (σ_{p-air}^{inel} , forward particle spectra)

 $\bullet\,\,\Rightarrow\,\,{\rm most}$ relevant to LHC studies of pp collisions

predictions for muon density: on secondary particle interactions (cascade multiplication); mostly on N^{ch}_{π-air}
 ⇒ small potential influence of 'new physics'

QGSJET-II-04 [SO, 2011]

- original ideas: QGS model [Kaidalov & Ter-Martirosyan, 1982]
 → QGSJET [Kalmykov & SO, 1993, 1997] → QGSJET-II [SO, 2006]
- theoretically most advanced: e.g. microscopic treatment of nonlinear effects (Pomeron-Pomeron interaction diagrams)
- ⇒ strong predictive power (minimal number of parameters)

Cosmic ray interaction models

QGSJET-II-04 [SO, 2011]

- theoretically most advanced: e.g. microscopic treatment of nonlinear effects (Pomeron-Pomeron interaction diagrams)
- \Rightarrow strong predictive power (minimal number of parameters)

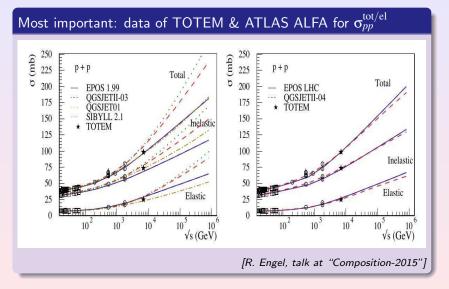
EPOS-LHC [Pierog, Karpenko, Katzy, Yatsenko & Werner, 2015]

- VENUS [Werner, 1993] → NEXUS [Drescher, Hladik, SO, Pierog & Werner, 2001] → EPOS [Werner, Liu & Pierog, 2006]
- more phenomenological (e.g. parametrized saturation effects)
 - \Rightarrow larger parameter freedom
- additional theoretical mechanisms (e.g. energy-momentum sharing at the amplitude level, hydrodynamics for final states)
- generally better description of existing data (e.g. pt spectra)

Cosmic ray interaction models

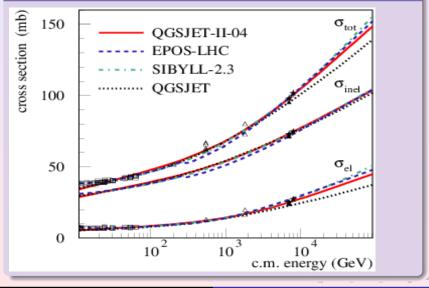
QGSJET-II-04 [SO, 2011]

- theoretically most advanced: e.g. microscopic treatment of nonlinear effects (Pomeron-Pomeron interaction diagrams)
- \Rightarrow strong predictive power (minimal number of parameters)

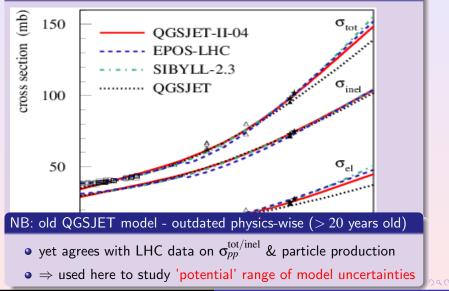

EPOS-LHC [Pierog, Karpenko, Katzy, Yatsenko & Werner, 2015]

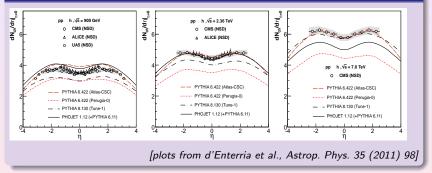
- more phenomenological (e.g. parametrized saturation effects)
 - $\bullet \ \Rightarrow \text{ larger parameter freedom}$
- additional theoretical mechanisms (e.g. energy-momentum sharing at the amplitude level, hydrodynamics for final states)
- generally better description of existing data (e.g. pt spectra)

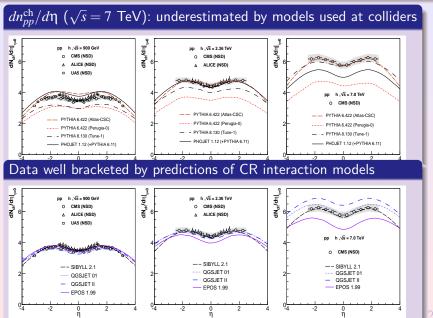
SIBYLL-2.3 [Riehn, Engel, Fedynitch, Gaisser & Stanev, 2015]


- SIBYLL-1.7 [Fletcher, Gaisser, Lipari & Stanev, 1994]
 → SIBYLL-2.1 [Ahn, Engel, Gaisser, Lipari & Stanev, 2009]
- relatively simple ('minijet' approach)
- differs from QGSJET-II & EPOS in many important aspects
- has similarities to models used at LHC (e.g. PYTHIA)

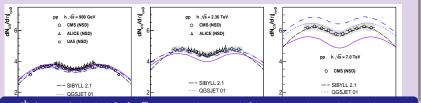
All the models: updated with Run 1 data of LHC

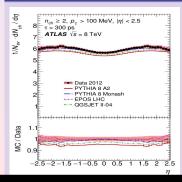

All the models: updated with Run 1 data of LHC

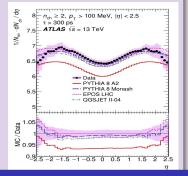

All the models: updated with Run 1 data of LHC

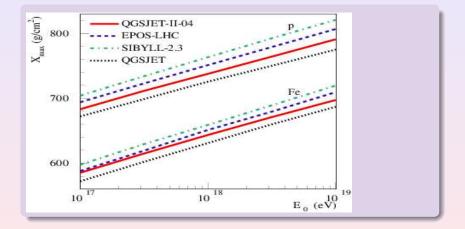


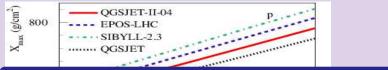
Central production: no surprise for CR interaction models


Central production: no surprise for CR interaction models

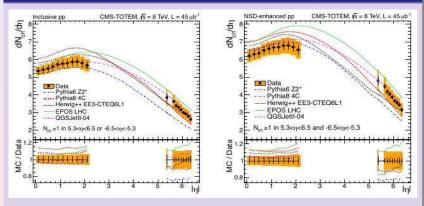

200


Central production: no surprise for CR interaction models


 $dn_{nn}^{\rm ch}/d\eta$ of ATLAS ($\sqrt{s} = 8$ and 13 TeV): retuned models o.k.

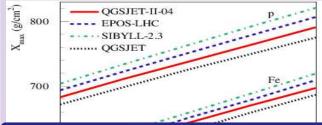

200

Model predictions for X_{max} : yet large differences

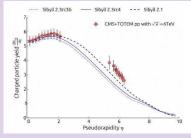


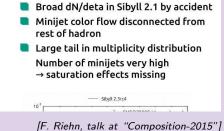
▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Model predictions for X_{max} : yet large differences

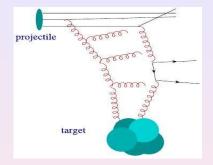


1st hint: combined CMS-TOTEM analysis of $dN_{\rm ch}/d\eta$



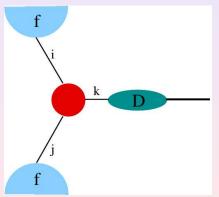

• only EPOS-LHC & QGSJET-II-04 describe the spectral shape

Model predictions for X_{max} : yet large differences


Same problem emerges for the SIBYLL model

Hadronic interactions: qualitative picture

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades
 ⇒ particle production
- virtual cascades
 ⇒ elastic rescattering (just momentum transfer)

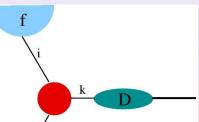

Universal interaction mechanism

- different hadrons (nuclei) ⇒ different initial conditions (parton Fock states) but same mechanism
- energy-evolution of the observables (e.g. σ^{tot}_{pp}): due to a larger phase space for cascades to develop

Hadronic interactions: input from pQCD & problems

• pQCD: collinear factorization applies for inclusive spectra $\frac{d^3\sigma_{pp \to h}}{dp^3} = \sum_{i,j,k} f_{i/p} \otimes \sigma_{ij \to k} \otimes f_{j/p} \otimes D_{h/k}$

- separates short- & long-distance dynamics
- pQCD predicts evolution of PDFs (f_{i/p}) & FFs (D_{h/k})
- ⇒ allows to simulate perturbative (high p_t) part of parton cascades (initial & final state emission)



Hadronic interactions: input from pQCD & problems

- pQCD: collinear factorization applies for inclusive spectra $\frac{d^3\sigma_{pp\to h}}{dp^3} = \sum_{i,j,k} f_{i/p} \otimes \sigma_{ij\to k} \otimes f_{j/p} \otimes D_{h/k}$
- separates short- & long-distance dynamics
- pQCD predicts evolution of PDFs (f_{i/p}) & FFs (D_{h/k})

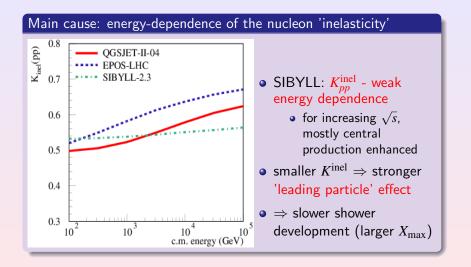
• \Rightarrow allows to simulate / What is beyond and why the models are so different?

- nonperturbative (low p_t) parton evolution ('soft' rescatterings; very initial stage of 'semihard' cascades)
- multiple scattering aspect
- nonlinear effects (interactions between parton cascades)
- constituent parton Fock states & hadron 'remnants'

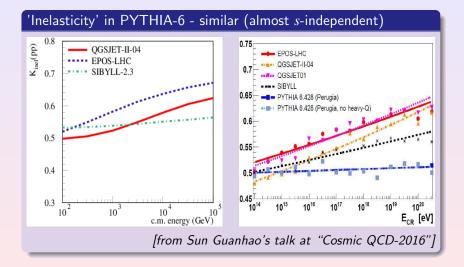
Hadronic interactions: nonperturbative Fock states

1. (Implicitely) always same nonperturbative Fock state (typical for models used at colliders, also SIBYLL model)

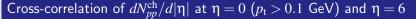
- multiple parton cascades originate from the same initial parton state
- multiple scattering has small impact on forward spectra
 - new branches emerge at small x $(G(x,q^2) \propto 1/x)$
- ⇒ Feynman scaling & limiting fragm. for forward production
- higher $\sqrt{s} \Rightarrow$ more abundant central particle production
- forward & central production decoupled from each other
 - (descreasing number of cascade branches for increasing *x*)

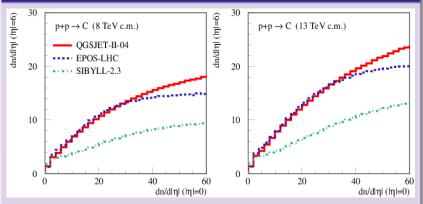


Hadronic interactions: nonperturbative Fock states

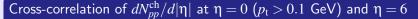

2. $p = \sum$ of multi-parton Fock states [EPOS & QGSJET(-II)]

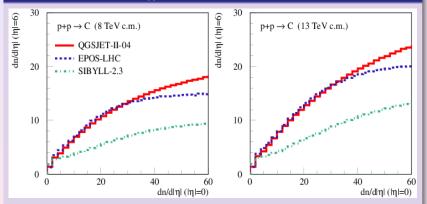
- many cascades develop in parallel (already at nonperturbative stage)
- higher $\sqrt{s} \Rightarrow$ larger Fock states come into play: $|qqq\rangle \rightarrow |qqq\bar{q}q\rangle$ $\rightarrow \dots |qqq\bar{q}q...\bar{q}q\rangle$
 - ⇒ softer forward spectra (energy sharing between constituent partons)
- forward & central particle production - strongly correlated
 - e.g. more activity in central detectors ⇒ larger Fock states ⇒ softer forward spectra


Why of importance for air shower predictions?

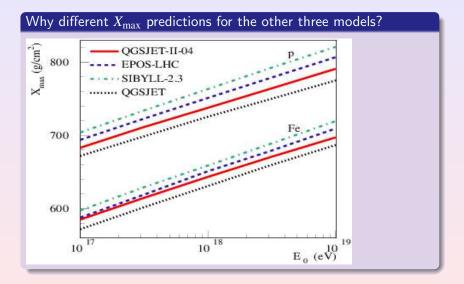


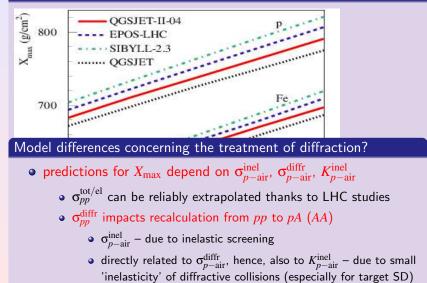
Why of importance for air shower predictions?


'Smoking gun' test: signal correlations in CMS & TOTEM

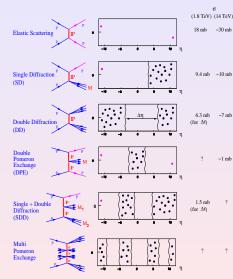


- strong correlation for QGSJET-II-04 & EPOS-LHC (apart from the tails of the multiplicity distributions)
- twice weaker correlation for SIBYLL-2.3


'Smoking gun' test: signal correlations in CMS & TOTEM

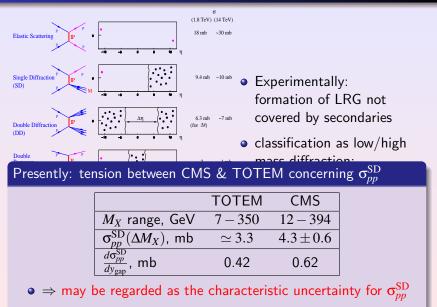

 strong correlation for QGSJET-II-04 & EPOS-LHC (apart from the tails of the multiplicity distributions)
 Alternatively: discrimination by LHCf & ATLAS (see extra slides)

Relevance of the inelastic diffraction



Relevance of the inelastic diffraction

Why different X_{max} predictions for the other three models?



Inelastic diffraction

- Experimentally: formation of LRG not covered by secondaries
- classification as low/high
 mass diffraction:
 matter of convention
- theoretically: different mechanisms for low and high mass diffraction (e.g. in QGSJET-II)

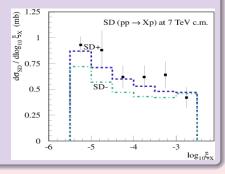
Inelastic diffraction

• impact on X_{\max} ?

Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

Two alternative model versions (tunes): SD+ & SD-

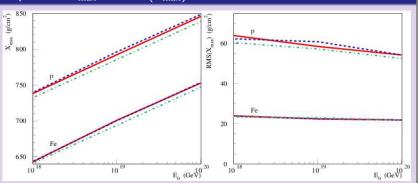
- SD+: increased high mass diffraction (HMD)
 - to approach CMS results
 - slightly smaller LMD to soften disagreement with TOTEM


Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

Two alternative model versions (tunes): SD+ & SD-

- SD+: increased high mass diffraction (HMD)
 to approach CMS results
 - slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- similar $\sigma_{pp}^{tot/el}$ & central particle production in both cases

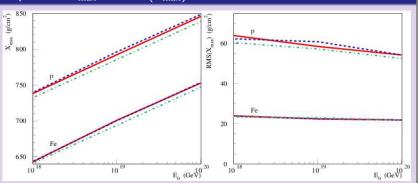
Impact of uncertainties of $\sigma_{pp}^{ m SD}$ on $X_{ m max}$ predictions


Single diffraction: SD- agrees with TOTEM, SD+ o.k. with CMS						
M _X	range, GeV	< 3.4	3.4 - 1100	3.4-7	7-350	350-1100
T	DTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$
ор	tion SD+	3.2	8.2	1.8	4.7	1.7
ор	tion SD-	2.6	7.2	1.6	3.9	1.7

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへで

Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

Impact on X_{\max} & RMS(X_{\max})



Option SD-: smaller low mass diffraction

- \Rightarrow smaller inelastic screening \Rightarrow larger σ_{p-air}^{inel}
- smaller diffraction for proton-air \Rightarrow larger $K_{p-\text{air}}^{\text{inel}}$
- \Rightarrow smaller X_{max} (all effects work in the same direction): $\Delta X_{\text{max}} \simeq -10 \text{ g/cm}^2$

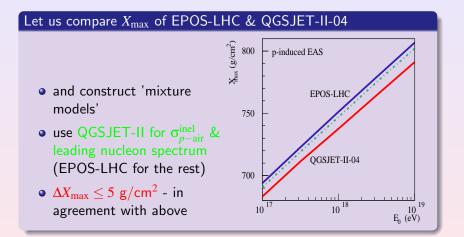
Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

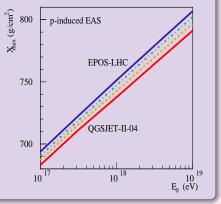
Impact on X_{\max} & RMS(X_{\max})



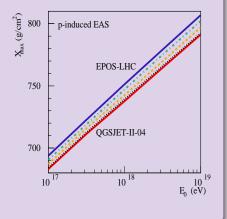
Option SD+: larger high mass diffraction

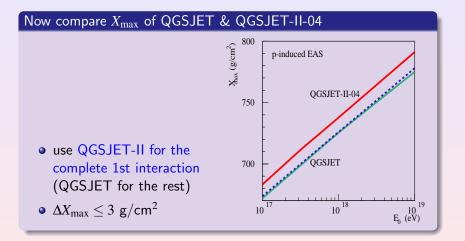
- opposite effects
- but: minor impact on X_{max} ($\Delta X_{\text{max}} < 5 \text{ g/cm}^2$)
- in both cases: minor impact on RMS(X_{max}): < 3 g/cm² (dominated by σ^{inel}_{p-air})

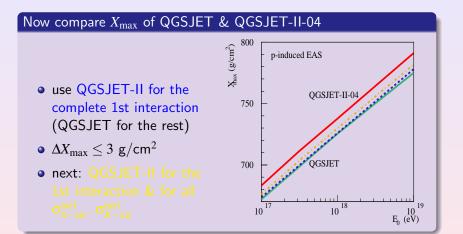

Other sources of model uncertainties for X_{max}


- previous analysis not general enough?
- or other interaction properties relevant?
- to answer use "cocktail" model approach

Other sources of model uncertainties for X_{max}

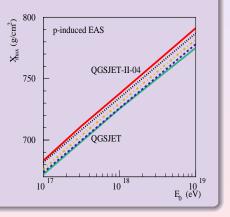

Let us compare X_{max} of EPOS-LHC & QGSJET-II-04


- QGSJET-II for σ^{inel}_{p-air} & leading nucleon spectrum (EPOS-LHC for the rest)
- $\Delta X_{\text{max}} \le 5 \text{ g/cm}^2$ in agreement with above
- now QGSJET-II for the complete 1st interaction (EPOS-LHC for the rest)
- $\Delta X_{\rm max} \leq 5~{\rm g/cm^2}$
- reason: harder pion spectra in *p* – air in EPOS-LHC



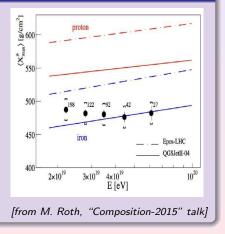
Let us compare X_{max} of EPOS-LHC & QGSJET-II-04

- QGSJET-II for σ^{inel}_{p-air} & leading nucleon spectrum (EPOS-LHC for the rest)
- $\Delta X_{\text{max}} \le 5 \text{ g/cm}^2$ in agreement with above
- now QGSJET-II for the complete 1st interaction (EPOS-LHC for the rest)
- $\Delta X_{\rm max} \leq 5~{\rm g/cm^2}$
- remaining difference: copious p
 p
 p
 p
 p
 oduction in π- & K-air in EPOS-LHC

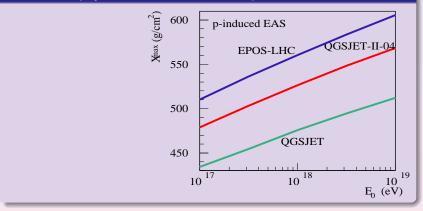



Now compare X_{max} of QGSJET & QGSJET-II-04

- use QGSJET-II for the complete 1st interaction (QGSJET for the rest)
- $\Delta X_{\rm max} \leq 3 {\rm g/cm^2}$
- next: QGSJET-II for the 1st interaction & for all $\sigma_{\pi-air}^{inel}$, σ_{K-air}^{inel}
- rest: mostly due to softer pion & kaon spectra in π-air in QGSJET

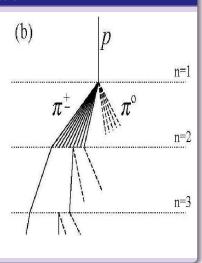


- X_{max} for 10^{19} eV proton EAS using 'cocktail': QGSJET-II for $E > E_{\text{trans}}$ and EPOS-LHC or QGSJET for $E < E_{\text{trans}}$
- main difference for E → E₀ (before most of the energy goes into the e/m cascade)
- how to constrain pion-air collisions at VHE?!



PAO measurement of maximal muon production depth X_{\max}^{μ}

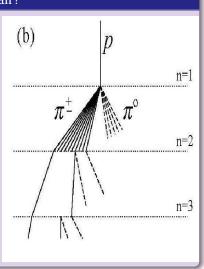
- models predict deeper X_{\max}^{μ} than observed
 - e.g. one needs primary iron for QGSJET-II-04
 - or primary gold for EPOS-LHC...


What is the physics behind the different predictions for X_{\max}^{μ} ?

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

1) Smallness of the π – air cross section?

- NB: muons originate from a multi-step hadron cascade
- smaller $\sigma_{\pi-air}^{inel} \Rightarrow$ larger distances between the cascade steps
 - \Rightarrow deeper X_{\max}^{μ}
 - NB: larger diffraction in $\pi - air \Rightarrow similar effect$ [credits to T. Pierog]

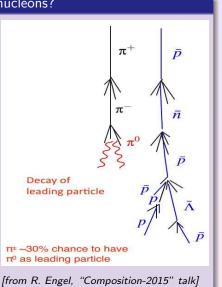


・ロン ・回 と ・ヨン ・ヨン

Э

2) Hardness of pion spectra in π – air?

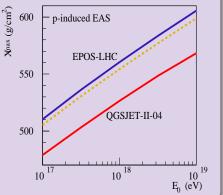
- pion decay probability: $p_{\text{decay}} \propto E_{\pi}^{\text{crit}}/E_{\pi}/X$
- $X^{\mu}_{
 m max}$: where $p_{
 m decay} \sim p_{
 m inter}$
- harder spectra in π air \Rightarrow deeper X_{\max}^{μ} (effectively one more cascade step)

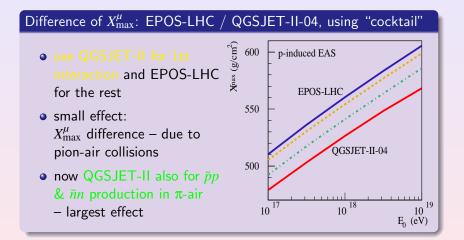


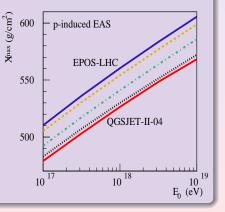
・ロン ・回 と ・ ヨ と ・ ヨ と …

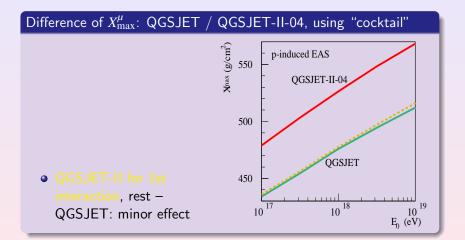
Э

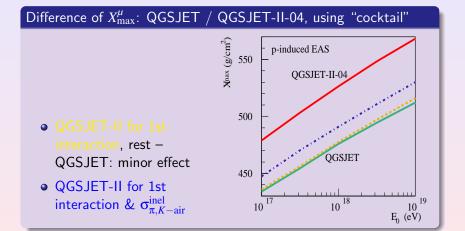
3) Copious production of (anti-)nucleons?

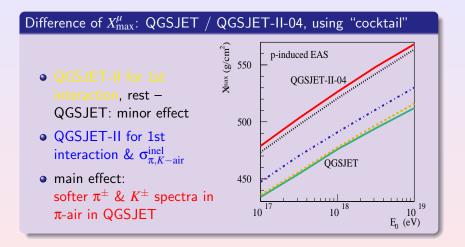

- no decay for $p \& \bar{p} (n \& \bar{n})$ \Rightarrow few more cascade steps
- but: impact on X_{\max}^{μ} IFF $N_{p,\bar{p},n,\bar{n}}$ comparable to N_{π} ! (the case of EPOS)



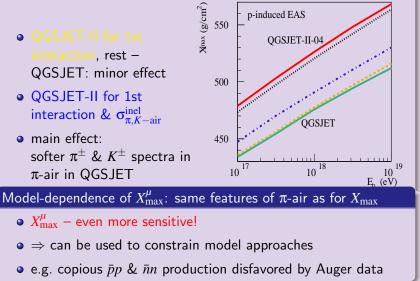

 X_{\max}^{μ} difference – due to pion-air collisions

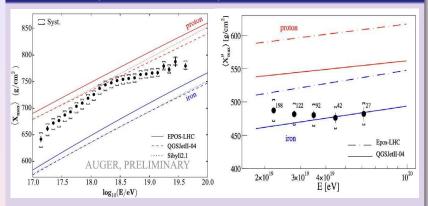





Difference of X_{max}^{μ} : EPOS-LHC / QGSJET-II-04, using "cocktail"

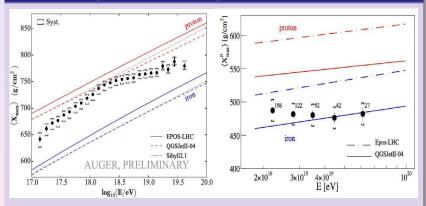
- use QGSJET-II for 1st interaction and EPOS-LHC for the rest
- small effect: X^µ_{max} difference – due to pion-air collisions
- largest effect: copious pp
 nn production in EPOS
- remaining difference:
 π[±] & K[±] spectral shapes
 & diffraction in π- & K-air



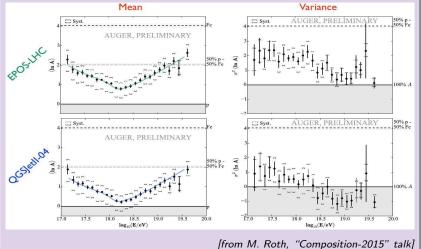


Difference of X_{max}^{μ} : QGSJET / QGSJET-II-04, using "cocktail"

Interpreting simulteneously PAO data on $X_{\text{max}} \& X_{\text{max}}^{\mu}$?

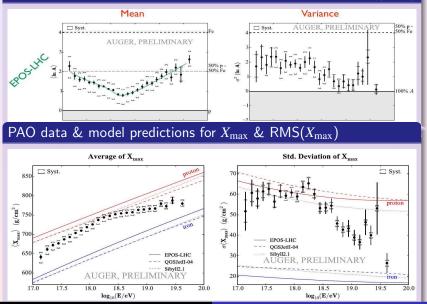

This would require a faster development of the hadronic cascade

- because: impact on X_{\max}^{μ} stronger than on X_{\max}
- technically: requires higher $\sigma_{\pi-air}^{inel}$ and/or softer π^{\pm} spectra • \Rightarrow towards old QGSJET


Interpreting simulteneously PAO data on $X_{\text{max}} \& X_{\text{max}}^{\mu}$?

This would require a faster development of the hadronic cascade

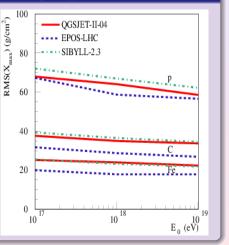
- because: impact on X_{\max}^{μ} stronger than on X_{\max}
- technically: requires higher $\sigma_{\pi-air}^{inel}$ and/or softer π^{\pm} spectra • \Rightarrow towards old QGSJET
- \Rightarrow this would push us towards a light composition!


PAO analysis favors models with deeper X_{max} & smaller RMS (X_{max})

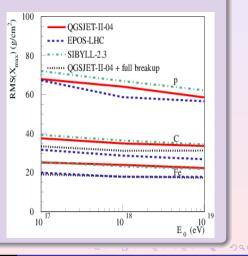
<ロ> <同> <同> <同> < 同> < 同>

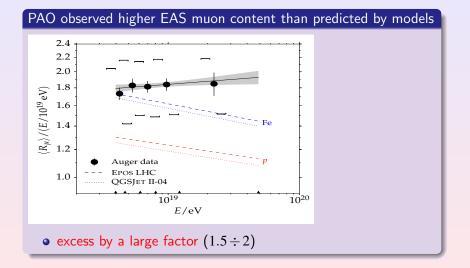
æ

PAO analysis favors models with deeper X_{max} & smaller RMS(X_{max})

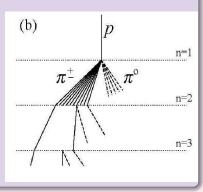

 $\mathcal{O} \land \mathcal{O}$

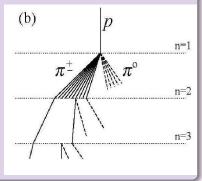
PAO analysis favors models with deeper X_{max} & smaller RMS(X_{max})


NB: small model uncertainty for $RMS(X_{max})$ based on LHC data

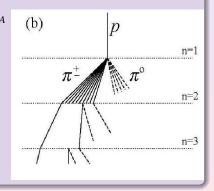

- models tuned to LHC data on $\sigma_{pp}^{\text{inel}} \Rightarrow \text{similar}$ RMS(X_{max}) for protons
- differences for primary nuclei: due to the fragmentation of the 'spectator' part

NB: small model uncertainty for $RMS(X_{max})$ based on LHC data

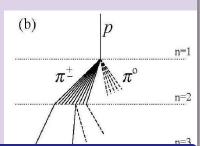

- models tuned to LHC data on $\sigma_{pp}^{\text{inel}} \Rightarrow \text{similar}$ RMS (X_{max}) for protons
- differences for nucleus-induced EAS: due to the fragmentation of the 'spectator' part
- to explain EPOS results: QGSJET-II & full break up of the spectator part (into separate nucleons)
 - NB: full break up in variance with exp. data


• NB: N_{μ} results from a multi-step hadron cascade

• ~ 1 cascade step per energy decade


• NB: N_{μ} results from a multi-step hadron cascade

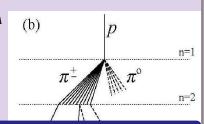
- $\bullet~\sim 1$ cascade step per energy decade
- let N_{μ} be o.k. up to energy E_A
- strong N_μ enhancement at energy E_B (E_B < 100E_A)?
 - i.e. within 2 orders of magnitude in energy



NB: N_μ results from a multi-step hadron cascade
 ~1 cascade step per energy decade

- let N_μ be o.k. up to energy E_A
 strong N_μ enhancement at energy E_B (E_B < 100E_A)?
 - i.e. within 2 orders of magnitude in energy
- secondary pions: mostly with x_F < 0.1
 - ⇒ at most 1 cascade step between E_A & E_B!

- NB: N_{μ} results from a multi-step hadron cascade
 - $\bullet~\sim 1$ cascade step per energy decade
- let N_{μ} be o.k. up to energy E_A
- strong N_μ enhancement at energy E_B (E_B < 100E_A)?
 - i.e. within 2 orders of magnitude in energy
- secondary pions: mostly with x_F < 0.1


Can muon excess be produced by 1-2 cascade steps?

- if we double N^{ch} for the 1st interaction?
 - < 10% increase for N_{μ} ! [SO, talk at C2CR-2005]
- to get, say, a factor 2 enhancement: N_{ch} should rise by an order of magnitude

- NB: N_{μ} results from a multi-step hadron cascade
 - $\bullet~\sim 1$ cascade step per energy decade
- let N_{μ} be o.k. up to energy E_A
- strong N_μ enhancement at energy E_B (E_B < 100E_A)?
 - i.e. within 2 orders of magnitude in energy

• secondary pions: Perhaps 'new physics' does it?

- proton-air cross section at UH energies: $\sigma_{p-air}^{inel} \sim 1/2$ b
- to be detected by air shower techniques: new physics should impact the bulk of interactions
- \Rightarrow to emerge with barn-level cross section
 - presently at LHC: nothing at fb level (10^{-15} b)

(b)

n

- NB: N_μ results from a multi-step hadron cascade
 ~1 cascade step per energy decade
- let N_{μ} be o.k. up to energy E_A
- strong N_μ enhancement at energy E_B (E_B < 100E_A)?
 - i.e. within 2 orders of magnitude in energy
- secondary pions: mostly with x_F < 0.1

Can muon excess be produced by 1-2 cascade steps?

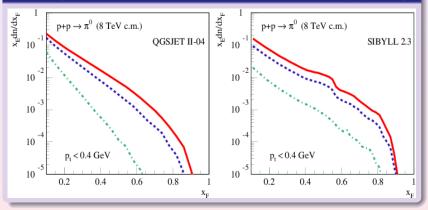
- if we double N^{ch} for the 1st interaction?
 - < 10% increase for N_{μ} ! [SO, talk at C2CR-2005]

If the muon excess is real it should be seen already at 10^{17} eV!

n=3

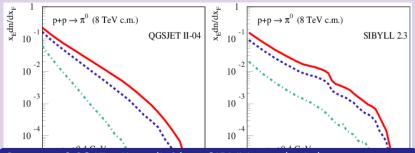
Summary

Q LHC studies of *pp* collisions constrained interaction models


- \bullet most important for CR physics: $\sigma_{\it pp}^{tot/el}$ by TOTEM & ATLAS
- of importance: to resolve the diffraction issue
- ② Differences for predicted K^{inel}_{p-air} (⇒ X_{max}): model assumptions for constituent parton Fock states
 - can be discriminated by combined measurements with forward & central detectors
 - e.g. studies of CMS-TOTEM correlation may refute SIBYLL
- Present uncertainties for EAS predictions: largely due to the treatment of pion-air interactions
 - can be constrained by X_{\max}^{μ} measurements in CR experiments
- **9** Present PAO data on X_{max}^{μ} : push towards a light composition
 - but: conflict with PAO results on $RMS(X_{max})$

Extra slides

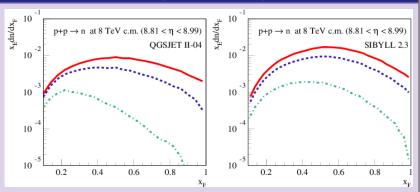
▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶


Tests at LHC: correlations of central & forward production

Alternatively, forward π^0 spectra in LHCf for different ATLAS triggers (\geq 1, 6, 20 charged hadrons of $p_t > 0.5$ GeV & $|\eta| < 2.5$)

Tests at LHC: correlations of central & forward production

Alternatively, forward π^0 spectra in LHCf for different ATLAS triggers (\geq 1, 6, 20 charged hadrons of $p_t > 0.5$ GeV & $|\eta| < 2.5$)

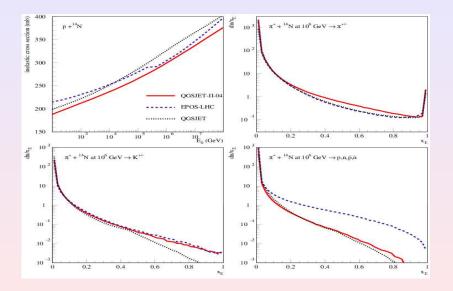


Compare QGSJET-II-04 (left) to SIBYLL 2.3 (right)

- enhanced multiple scattering
 ⇒ softer pion spectra
- → violation of limiting fragmentation (energy sharing between constituent partons)
- nearly same spectral shape for all the triggers
- ⇒ perfect limiting fragmentation (central production decoupled)

Tests at LHC: correlations of central & forward production

Neutron spectra in LHCf ($8.99 < \eta < 9.22$) for same triggers


 remarkably universal spectral shape in SIBYLL-2.3 (decoupling of central production)

• closely related to the small 'inelasticity' of the model

- strong suppression of forward neutrons in QGSJET-II-04
 - higher central activity \Rightarrow more constituent partons involved \Rightarrow less energy left for the proton 'remnant'

◆□ → ◆□ → ◆ = → ◆ = → へ ●

σ_{inel} & forward hadron spectra for pion-nytrogen collisions

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで