Overview of Galactic Cosmic Ray Detection

Donghwa Kang Karlsruhe Institute of Technology

XXV European Cosmic Ray Symposium 5 – 9 August 2016, Torino, Italia

Outline

- Introduction
- Selected science results on galactic cosmic rays
 - all-particle energy spectrum
 - elemental composition
 - energy spectra based on different hadronic models
- Extensive air shower measurements of PeV to EeV
 - knee and transition region: KASCADE, KASCADE-Grande, Tunka, IceTop
 - TA Low Energy Extension: TALE
 - Auger to lower energy: HEAT
- Conclusion

Galactic Cosmic Rays

Propagation through galaxy (B=3µG)

Acceleration of cosmic rays in supernova remnants

> Direct or indirect measurement

[Particle Data Group 2015]

[Particle Data Group 2015]

Present Experiments 10¹⁶ – 10¹⁸ eV

KASCADE-Grande

KArlsruhe Shower Core and Array DEtector

- Energy range 100TeV 80PeV
- Since 1995
- Large number of observables

KASCADE Energy Spectra of Single Mass Groups

<u>Searched:</u> energy and mass of the cosmic ray particles <u>Given:</u> N_e and N_{μ} for each single event \rightarrow solve the inverse problem

$$\frac{dJ}{d \lg N_e d \lg N_{\mu}^{tr}} = \sum_{A} \int_{-\infty}^{+\infty} \frac{dJ_A}{d \lg E} \left(p_A (\lg N_e, \lg N_{\mu}^{tr} | \lg E) d \lg E \right)$$

- Kernel function obtained by Monte Carlo simulations (CORSIKA)
- Contains: shower fluctuations, efficiencies, reconstruction resolution

- Knee caused by light primaries
- Relative abundancies depend strongly on high energy interaction model

https://kcdc.ikp.kit.edu/

- KCDC (KASCADE Cosmic ray Data Centre)

 publishing research data
 from the KASCADE experiment
- Motivation and Idea of Open Data:
 - general public has to be able to access and use the data
 - the data has to be preserved for future generations
- Web portal:
 - providing a modern software solution for publishing KASCADE data for a general audience
 In a second step: release the software as Open Source for free use by other experiments

• Data access:

1.6-10⁸ EAS events of first data release is now available

Paper in preparation

KASCADE-Grande

(KArlsruhe Shower Core and Array DEtector + Grande)

Energy and Elemental Composition

- 2-dim. shower size distribution \rightarrow determination of primary energy
- Separation in "electron-rich" and "electron-poor" events

 $log_{10}(E) = [a_{p} + (a_{Fe} - a_{p}) \cdot k] \cdot log_{10}(N_{ch}) + b_{p} + (b_{Fe} - b_{p}) \cdot k$ $k = (log_{10}(N_{ch}/N_{\mu}) - log_{10}(N_{ch}/N_{\mu})_{p}) / (log_{10}(N_{ch}/N_{\mu})_{Fe} - log_{10}(N_{ch}/N_{\mu})_{p})$

Spectra of Individual Mass Groups

- steepening close to 10¹⁷eV (2.1σ) in all-particle spectrum
- steepening due to heavy primaries (3.5σ)
- hardening at 10^{17.08}eV
 (5.8σ) in light spectrum
- Slope change from γ = -3.25 to γ = -2.79

KASCADE-Grande: Model Dependence

- Structures of all-particle, heavy and light spectra similar
 → knee by heavy component; ankle by light component
- Relative abundances different for different high-energy hadronic interaction models

[Advances in Space Research 53 (2014) 1456]

Combined Analysis

- For KASCADE: additional stations at larger distances \rightarrow higher energies
- For Grande: additional 252 stations \rightarrow higher accuracy

[Dissertation of Sven Schoo]

Combined Analysis: Energy Spectra

- Energy spectra based on different hadronic interaction models
- All structures confirmed
- All-particle spectrum good agreement
- Relative abundance of light and heavy quite different

Spectra not corrected for uncertainties

Combined Analysis: QGSJet-II.04 vs EPOS-LHC

- Light primary interactions okay?
- Heavy primary interactions show differences
 - Muon component not sufficiently described (Distance from shower core covered by muon detectors limited)

KASCADE-Grande: Muon Attenuation Length

Attenuation length measured is different from the predictions of Monte Carlo

- \rightarrow Observed evolution of the muon content of EAS in the atmosphere is not described by the hadronic interaction models
- \rightarrow Influences absolute energy and mass scale, but not spectral features

[Juan Carlos Arteaga, Submitted to Astropart. Phys.]

Conclusion Combined Analysis

- Structures of spectra confirmed
- Models still do not agree to each other and to data
- Light component seems to agree better than heavy
- Problem probably in the muons (known due to special selection)
- Around 10¹⁵ eV still (again) no clear picture

[Dissertation of Sven Schoo, Paper in preparation]

Tunka

Tunka: Reconstruction

- Core accuracy ~ 10 m
- Energy resolution ~ 15%
- Energy threshold at 10¹⁵ eV

- E₀ ~ (Q₂₀₀)^g (LDF function, g depends on composition)
- X_{max} reconstruction: Steepness of LDF

Tunka: All-particle Energy Spectrum

- Two sharp feature at energies:
 - 2-10¹⁶ eV (first announced by KASCADE-Grande in 2010)
 - 3-10¹⁷ eV (similar to that announced by Yakutsk and Fly's Eye in 90th)
- Tunka-HiSCORE:
 - prototype 9 optical stations
 - 80 h during 13 clean
 moonless nights from
 February to March in 2014

[V. Prosin et al, EPJ Conf. 121 (2016) 03004]

Tunka: Comparison With Others

- Agreement with KASCADE-Grande and IceTop
- All the spectra coincide with Tunka-133, if energy of KASCADE-Grande is increased by 3% and energy of IceTop is decreased by 3%
- This shift is less than announced experimental accuracy
- Agreement with old Fly's Eye, HiRes and TA spectra

Tunka: Light and Heavy Components

- The heavy component (all other) has a break at 10¹⁷ eV
- The light component (p+He) starts to rise again above 10¹⁷ eV

Tunka-133: Composition

- An agreement with previous Auger 2013
- But no enough statistics to discuss the discrepancy with the current Auger results

[J. of Phys.: Conf. Series 718 (2016) 052031]

ІсеТор

600

400

∞ 76 **∞** 77 **8**

• 74

- Energy range: PeV 1EeV
- Area: 1 km²
- 2835m altitude (680 g/cm²)
- 81 ice cherenkov stations
- LDF + particle density at 125m
- in-ice high-energy muons

IceTop: Energy Spectrum (remind)

- The spectrum does not follow a simple power law above the knee up to 1 EeV
- Observed a spectral hardening at 18 \pm 2 PeV
- The spectrum steepens at 130 \pm 30 PeV

[PRD88 (2013) 042004]

IceTop / IceTop+IceCube Compared

- Coincident event analysis uses a neural network to determine both energy and composition
- Improvements in snow attenuation calculation and in light propagation models
 [Nucl. Phys. B Proc. Supp. (2016) 1]

IceTop+IceCube: Composition

- Energy dependence of <ln(A)> from the coincident analysis and its systematic effects
- The combined IceTop+IceCube analysis shows a clear trend toward heavy primaries in average <In(A)>
- The heavy knee is at higher energies and above the models

All-particle Energy Spectrum KASCADE-Grande – Tunka – IceTop

Differences between the experiments for same hadronic interaction model are in the same order of the difference between results based on different hadronic interaction models at one experiment

- Same structures observed in spite of different observables and observation levels
- Absolute scale difference: < 20% within systematics (by method and composition sensitivity)

TA Low Energy Extension (TALE)

- 10 new telescopes to look higher in the sky (31-59°) to see shower development to much lower energies
- Graded infill surface detector array more densely packed surface detectors (lower energy threshold)

Combined TA Energy Spectrum

- TALE FD (10^{16.5} < E < 10^{18.4} eV)
- TALE FD reconstructed using only the Cherenkov light (10^{15.6} < E < 10^{17.4} eV)
- Two features: a low energy ankle at 10^{16.34} eV and a second knee at 10^{17.3} eV

Comparison With Others

- Strong composition dependence and still large systematic errors
- Discrepancy between TA Combined and the ground based experiments due to systematic effects?

High Elevation Auger Telescope (HEAT)

- Low energy extension of Pierre Auger Observatory
- 3 tiltable FD at Coihueco site with FOV of 30 – 60° in upward mode
- Due to the FOV higher in the atmosphere, sensitive down to 10¹⁷eV → on decade in energy overlap with KASCADE-Grande

Auger Muons and Infill for the Ground Array (AMIGA): SD Infill + Muon Counter 23.5 km² with 750 m spacing

HEAT: Composition

- Energy range: 10¹⁷ 10^{18.3} eV
- Data between 01.06.2010 and 15.08.2012
- Mean of the shower maxima as well as their fluctuations indicate a composition becoming lighter up to 10^{18.3} eV
- Transition from light to heavier primaries above 10^{18.3} eV

Conclusion

- Features of the energy spectrum found by KASCADE-Grande have been confirmed by Tunka, IceTop and TALE with improved statistics and analysis technique:
 - A steepening at 10¹⁷ eV dominated by heavy components
 - A hardening at about 2.10¹⁶ eV
 - A flattening of the light component around 10¹⁷eV = Maybe the first sign of an extra-galactic component
- The mass composition of KASCADE-Grande, Tunka and IceTop shows similar tendencies, however, the absolute scale difference is still large due to hadronic interaction models:
 - Still some contradiction on the composition around 10¹⁸ eV
 - HEAT indicates a clear transition from heavy to light between 10¹⁷ eV and 10¹⁸ eV, while Tunka and IceTop show a less pronounced effect.
- Relative abundancies depend strongly on high energy interaction model and astrophysical interpretation is limited by description of interactions in the atmosphere. Need to improve the hadronic interaction models