The solar modulation of cosmic rays:
“a South African perspective”
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@ We focus only on GCRs (Jovians and lons: Kecskemety; SEPs:
Gomez-Herrero, etc.)
@ also, only on long term changes (Shorter term: Lingri, Gil, Wozniak)
@ lastly, more observations from Munini, PAMELA, AMS
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A simple description of solar modulation ...

@ At the boundary, fy(Xp, Pp, t), is (assumed to
be) known

@ and assumed to be (spatially) isotropic and
constant, f,(Pp).

@ We want to determine f;(x 4, Pa, t) at any point
in the heliosphere.

@ They are connected by Liouville’s theorem,

Df

o =0= fa(xa, Paa t) = fb(Pb)

@ So, all we need to do it calculate

AP(Xg, Pa,t) = P, — Pj
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Pogorelov at al. (2015)
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@ |IBEX, measuring neutrals at
Earth, determine the plasma
conditions at infinity...

@ ... and, we measure the plasma at
Earth.

@ This can be included in
comprehensive MHD models and
compared to

@ Voyager observing (disturbed)
interstellar plasma in-situ...
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We have a good idea about it, but generally neglect it...
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Voyager 1 in the interstellar medium...
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(keep this one for later...)
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The Compton-Getting corrected streaming

S = 4rp? (CVf— K - V),
The derivation hinges on the “observational fact" that S ~ 0, which reduces,

for spherical symmetry, to
v of of
The solution is then simply

, P.\? .
/(raaPa): ? l(rb7Pb)?
b
Usually, the simplified choice of kp(P) = P/Py is made, so that

1 [P P, — P,
¢ Py Jp, Po

We can also perform an alternative derivation...
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Working in the solar wind frame, and assuming a spherical symmetric
system,

ap _z2v
P  3r
The time it takes to diffuse a distance ar,

dt.

2rdr
dt —_— 67.

Which, combined, yields
@ _2 Vv
P 3 3k
and can be integrated from (rz, P5) to (rp, Pp) to give an expression similar
to the classical force-field solution

oo dp 2 v [
/a HPP_3'3’$0‘/(3 df:qb
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@ Use Voyager to constrain the LIS

@ Compute the spectrum at Earth
using the force-field approach

@ Fit this to AMS data

It doesn’t work: the normal force-field
is just to simple to capture the
essential physics. Corti et al. (2016)
needed to implement an energy
dependent force-field parameter...
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The usual assumption is that

rp(P) = P/P,, leading to P
¢=Fo—Pa o
We would however argue that a better — =12
assumption is : |
P 0 10° //,
P)= | — L
we(P) (P0> s
which is still easily solvable (for ¢ # 0) .
w0’ 107 10° To*

P} — P) = &°.

But, unfortunately, for most applications, the force-field solution is an
oversimplification ...
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We think most of the physics of solar modulation is captured by the Parker
transport equation:
o _
ot

of
dlnP

—(U+Vd)'Vf+V~(K~Vf)+%(V-U)

as long as the CR distribution, f, remains (nearly?) isotropic
In higher dimensions only numerical solutions are possible

The use of stochastic differential equations (SDEs) have become
increasingly popular (Grandi (Milan group), Wawrzynczak (Polish group))

Of special importance is the drift effects...
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delta phi = 90 deg
Jovian electron propagation t.

10.0

Degenerate solutions for Jovian electron
intensities and propagation times:
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We start with a set of turbulence
transport equations which govern the
spatial properties of the background
MHD fluctuations...

This is then fed into a scattering
theory to determine the diffusion
coefficients...
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constant along ellipses in k-space that have a k, to k, ratio of £.
This would then be equivalent to the axisymmetric case, where
Ak, ky) is constant along circles defined by k. = k‘: + k}z
(Ruffolo et al. 2008), under the coordinate transformation
ki = ¢/, and k] = £'/%,. Assuming that 6B} /SB} is the
same for slab and 2D components (see, e.g., Ruffolo
et al. 20006), as might be expected for a generic suppression
of turbulence in one direction, implies that 6B7 / §B,2_J =,
which further implies that (ﬁf)/(fr\z) = ¢2. It remains now to
write Equation (38) in such a way as to allow one to calculate
expressions for r; using some specified form for
S (k!) = k[*A(k)). Following the approach of Ruffolo et al.
(2008), one can define a geometric mean of the x and y
components of the guiding center velocily iuch that
(72 = YD (%), with (57) = £(v7) and (7) = (¥]) /€.
and the term 'Sk (77) becomes k[ /(72). Furthermore,

account  that  §° = k2A = 5"’.2A and
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where A = 3r/v, and
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and the modelled intensities are L
compared to observations...

...with some success.

But, how do (time dependent) e
turbulence influence the drifts? ’ g
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B =By + b.
The drift velocity is then
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The weak-scattering drift coefficient is

_ PV
A 3qBy’

and the suppression factor

f1 =1+ (b?)/B;.
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We live in interesting times...

@ What will Voyager 2 encounter at the HP? Luo et al. (2016) suggest
February 2017-ish.

@ AMS and PAMELA continuing high resolution measurements over a
complete solar cycle.

@ We are continuously constraining the physics (and the coefficients) to
include in more sophisticated models.

@ We are especially interested in the charge-sign-dependent modulation
over solar maximum.

@ Will this coming solar minimum again be “unusual”?

@ With Voyager 1 in the interstellar medium, astrophysics and
heliospheric physics are moving ever closer ...
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