

High Statistics Measurement of the **Positron Fraction** in Primary Cosmic Rays with the Alpha Magnetic Spectrometer on the International Space Station

> Sami Caroff – LAPP Annecy, CNRS, France On behalf of the AMS collaboration

> > ECRS @ Torino

08/09/2016

COSMIC RAYS – the conventional scenario

 Supernovae accelerate particles of the interstellar medium (principally hydrogen and helium nuclei)

e-~1%

COSMIC RAYS – the conventional scenario

- Supernovae accelerate particles of the interstellar medium (principally hydrogen and helium nuclei)
- This particles propagate toward the turbulent galactic magnetic field

COSMIC RAYS – the conventional scenario

- Supernovae accelerate particles of the interstellar medium (principally hydrogen and helium nuclei)
- This particles propagate toward the turbulent galactic magnetic field
- They can collide with the interstellar medium nuclei and produce secondary particles

CAPP Beyond the conventional scenario

- Supernovae accelerate particles of the interstellar medium (principally hydrogen and helium nuclei)
- This particles propagate toward the turbulent galactic magnetic field
- They can collide with the interstellar medium nuclei and produce secondary particles
- According to this scenario, antimatter are secondary particles, an excess
 of antimatter with respect to the secondary production can be a sign of a
 new source of cosmic ray.

08/09/2016

ECRS @ Torino

08/09/2016

ECRS @ Torino

08/09/2016

ZÅ

100 cm

250 Data Fit TRD 200 Positrons Protons Charge confusion $(e^- \rightarrow e^+)$ TOF Events 150 $\chi^2/d.f.=0.60$ i. MAGN Tracker 100 Z 50 TOF 100 cm 0 1.2 0.2 0.6 0.8 0.4 1 n RICH TRD Estimator (83.2-100 GeV) U-1 -0.5 0.5 1.5 2 log₁₀ (E/p) 0 1 50 cm **ECAL** ECRS @ Torino 08/09/2016 8

Analysis principle

CLAPP

CAPP Analysis principle

CLAPP

Uncertainties

- Acceptance asymmetry
- Selection dependence
- Absolute energy scale and bin-to-bin migration
- Reference spectra
- Charge confusion

Energy [GeV]	N	Erection							
Energy [Gev]	INe ⁺	Fraction	ostat	oacc	o sel	omig	oref	o _{c.c.}	o syst
74.30-80.00	450	0.0963	0.0047	0.0002	0.0010	0.0007	0.0002	0.0006	0.0014
80.00-86.00	381	0.1034	0.0056	0.0002	0.0011	0.0007	0.0002	0.0007	0.0015
86.00-92.50	398	0.1207	0.0063	0.0002	0.0011	0.0007	0.0003	0.0009	0.0016
92.50-100.0	358	0.1169	0.00634	5% .0002	0.0013	0.0007	0.0003	0.0010	0.00181.5%
100.0-115.1	524	0.1205	0.0054	0.0002	0.0014	0.0007	0.0004	0.0013	0.0021
115.1-132.1	365	0.1110	0.0062	0.0002	0.0017	0.0007	0.0005	0.0018	0.0026
132.1-151.5	271	0.1327	0.0083	0.0002	0.0020	0.0007	0.0006	0.0024	0.0032
151.5-173.5	228	0.1374	0.0097	0.0002	0.0023	0.0007	0.0007	0.0031	0.0040
173.5-206.0	225	0.1521	0.0109	0.0002	0.0027	0.0007	0.0008	0.0044	0.0053
206.0-260.0	178	0.1550	0.0124	0.0003	0.0034	0.0007	0.0011	0.0076	0.0084
260.0-350.0	135	0.1590	0.0168	% 0.0003	0.0045	0.0007	0.0015	0.0123	0.013213%
350.0-500.0	72	0.1471	0.0278	0.0003	0.0064	0.0007	0.0022	0.0182	0.0194

Positron fraction – the turning point

08/09/2016

CLAPP

11

CLAPP

Positron fraction – high energy trend

12

08/09/2016

Positron fraction -Interpretation

Dark matter annihilation e⁺ e⁻ pair production

Pulsar e⁺ e⁻ pair production

- Models based on very different assumptions can describe observed trends in the data.
- The understanding of the positron excess still needs more precise data and better model prediction accuracy

08/09/2016

CLAPP

Positron fraction – Interpretation

Diffusion understanding : B/C cf Valerio Formato talk

Solar modulation understanding : Cf Stephano Della Torre talk

Lepton Anisotropies measurement : Cf Giuseppe La Vacca talk

> Lepton flux measurement : Maura Graziani and Manuela Vecchi

- Models based on very different assumptions can describe observed trends in the data.
- The understanding of the positron excess still needs more precise data and better model prediction accuracy

08/09/2016

CLAPP

Conclusions

- With **10.9 million** of electrons and positrons in the **0.5-500 GeV** range, AMS-02 have produced a precision measurement of the positron fraction.
- A steady increase is observed between 10 and 250 GeV.
- The positron fraction maximum is measured at 275 ± 32 GeV.
- Since the dominant uncertainty is the statistical one, the measurement of the positron fraction with more statistics is useful and will help to understand the underlying physics.