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Forbush decreases	caused	by	Interplanetary	Coronal	Mass	Ejections	(ICMEs)

SOHO/LASCO	C2	image

Temmer &	Nitta	 (2015)

Richardson	 &	Cane	(2011) Dumbovic et	al	(2012)

REMOTE	OBSERVATION
VISUALISATION

IN	SITU	MEASUREMENTS



Two-step	Forbush decreases	caused	by	ICMEs

Dumbovic et	al	(2012)

1st step:

shock/sheath	region
highly	 turbulent

strong	B

fast	decrease,
prolonged	 recovery

2nd step:

CME	ejecta
(magnetic	cloud,	 flux	rope)

smooth	&	strong	B
fluctuations	very	low

Symmetric-like	 decrease,
timespan	 limited	 to	the	ejecta



magnetic	ejecta	(ICME,	magnetic	cloud,	flux	rope)

- a	closed	magnetic	 structure:	no	direct	 magnetic	
connection	 between	 the	inside	and	the	outside	
=>	particles	 can	enter	 into	the	ejecta	via	
perpendicular	 diffusion	and/or	drift	(simplicity	
reasons	->	only	diffusion)

- initially	empty

magnetic	ejecta	(ICME,	magnetic	cloud,	flux	rope)

- cylindrical	 form
-moves	with	constant	velocity
- does	not	vary	 in	shape	or	size	

The	analytical	model	- assumptions

Based	on	Cane	et	al	(1995)
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where D⊥ is the perpendicular diffusion coefficient. This partial differential equation
is solved using the method of separation of variables (U(r, t) = T (t)R(r)), under the
assumption that the diffusion coefficient does not depend on r. The time dependence is
then given by the expression [see e.g. Crank, 1975, for details]:

T (t) = e−λ2Dt , (3)

where λ is a constant determined by the initial and boundary conditions. It can be
shown that the equation for the radial dependance can be written in a form:

r2R(r)′′ + rR(r)′ + λ2r2R(r) = 0 , (4)

which is the Bessel’s equation of the order 0. The solution of the Equation 4 can be
generally written as:

R(λr) = C1J0(λr) + C2N0(λr) , (5)

where J0(λr) and N0(λr) are Bessel and Neumann functions, respectively [see e.g.

Butkov, 1968, for details]. When the physical condition of finity at r = 0 is imposed on
R(λr) we find that only J0(λr) is admissible as a solution (N0(λr) is not finite in r = 0).
Therefore, the solution of the diffusion equation given by Equation 2 is:

U(r, t) = CJ0(λr)e
−λ2Dt , (6)

where C and λ are constants determined by the initial and boundary conditions. The
initial and boundary conditions can be written in the form:

U(r, t) =

{

0, 0 < r < a, t = 0

U0, r = a, t ≥ 0
(7)

where a is the radius of the cylinder, i.e. of the magnetic ejecta. With these initial and
boundary conditions, the solution for the particle density inside the magnetic ejecta can
be written [see Equation 5.22 in Crank, 1975]:
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where J0 and J1 are Bessel functions (of the first kind) of the order 0 and 1, respectively,
and λn are defined by the positive roots of J0(λna) = 0 (λn = αn

a , αn are positive
roots of J0), which are tabulated in tables of Bessel functions. Bessel functions J0 have
oscilatory character as shown in Figure 1a. On the other hand exponential function
rapidlly decreases with α2

n, therefore the solution can be written as:

2

- radial	diffusion
- D	does	not	change	 throughout	ejecta

equation	 for	the	particle	 density:

initial	 &	boundary	conditions:
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where J0 and J1 are Bessel functions (of the first kind) of the order 0 and 1, respectively,
and λn are defined by the positive roots of J0(λna) = 0 (λn = αn

a , αn are positive
roots of J0), which are tabulated in tables of Bessel functions. Bessel functions J0 have
oscilatory character as shown in Figure 1a. On the other hand exponential function
rapidlly decreases with α2

n, therefore the solution can be written as:

2

- initially	 empty
- Density	outside	constant
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Exact	analytical	 solution:

oscillatory rapidly	decreasing

We	neglect	 terms	with	n>1	and	renormalize	 according	 to	
initial	 &	boundary	conditions	 to	get	the	solution:	
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Figure 1: a) Bessel functions of the order zero (of the first kind), J0(↵nr) for di↵erent
positive roots ↵n; b) modeled cosmic ray count change during the passage of the ICME for
di↵erent values of the parameter f, which depends on the di↵usion coe�cient, time, and
ICME radius (D, t, and a, respectively).
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where C is a constant that holds all expresions with n¿1. Constant C can be obtained
through the fact that the expression given in equation 10 has to satisfy initial and boundary
conditions given in equation 7, C = ↵1J1(↵1)

2 . The final, normalised solution is therefore:
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The Forbush decrease is then given by A(%) = (U(r, t)/U0 � 1) · 100% and is shown in

Figure 1b for three di↵erent factors f , where f = �Dt/a2.

3 Result discussion

The model qualitatively explaines Forbush decreases caused by sheathless ICMEs. However
it is di�cult to estimate the quantitative aspect of the model, because it depends on the
di↵usion coe�cient which is not known. Future work should be based on how to derive the
di↵usion coe�cient and how the model then qualitatively agrees with the observations.

There are some di↵erences to the model presented by Cane et al. [1995]. We use di↵erent
boundary conditions: Cane et al. [1995] use U = 0 at t = 0, whereas we used U = U0 at

3

Building	the	analytical	model



f	=	f(a,t,D)
a =	radius	of	ICME

t =	diffusion	(transit)	time
D	=	diffusion	coefficient
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The	analytical	model	- results

Forbush decrease	 depends	on:

- Radius	of	ICME

- Diffusion	(transit)	time

- Diffusion	coefficient:

Blanco	 et	al	(2013)

? e.g.	Dumbovic et	al	(2012)

depends	on	the	strength	of	B
- but	how?

What	is	a	typical	diffusion	
coefficient	 in	magnetic	cloud
and	compared	 to	normal	solar	

wind??	

Blanco	 et	al	(2013)



Typical	 values:
Transit	 time	72	hours
MC	radius	0.05	AU

Forbush decrease	 6-7%

Diffusion	coefficient	 1018 cm2/s
(1014 m2/s)

The	analytical	model	- results

FORBUSH DECREASES ASSOCIATED TO STEALTH CORONAL MASS EJECTIONS

Figure 1: The figure displays hourly
averaged variation of the count rate
of detector F aboard SOHO (black
curve) and Chandra (red curve) dur-
ing the passage of a magnetic cloud.
SOHO data have been shifted by the
time the solar wind needs to move
from SOHOs position to Chandra.

from larger heights than most of the CMEs (Ma et al., 2010; D’Huys et al.,
2014; Kilpua et al., 2014), leading to a much weaker energy release than
under normal conditions (Schrijver et al., 2011). In addition, they are often
preceded by a nearby CME and/or are found in the vicinity of the polar
coronal hole, i.e. originate in a region of weak downward force from the
overlying magnetic field (D’Huys et al., 2014). Therefore, the effect on lower
layers is not strong enough to be observed in EUV range or in chromospheric
spectral lines. Since most of such events travel with the solar wind, they are
not likely to form a sheath region and are therefore suitable for FD ejecta-
effect consideration.

2. Observations and Event Selection

The observations presented here were made by the Electron Proton He-
lium INstrument (EPHIN) aboard the SOHO and the Chandra spacecraft
(Müller-Mellin et al., 1995). While SOHO orbits the Lagrangian point L1
since 1996, Chandra, launched July 23, 1999, is on an elliptical orbit around
the Earth. In contrast to SOHO, Chandra’s orbit includes crossings of the
radiation belts, magnetosphere as well as bow shock with an orbital period
of 63.5 hours. The hourly averaged variation of the single detector F aboard
SOHO (black curve) and Chandra (red curve) in % are shown during the
crossing of a magnetic cloud in Fig. 1. SOHO data have been shifted by the
time the solar wind needs to move from SOHOs position to Chandra. From
the graph it is obvious that taking into account the measured solar wind
speed and the distance between the two spacecraft the count rate variations
agree very well with each other.

A list of 11 stealth CMEs was provided by Kilpua et al. (2014). In what

Cent. Eur.Astrophys. Bull. 39 (2015) 1, 75–82 77

Heber	et	al	(2013)



Typical:
a=0.05	AU
TT=72h

max:
a=0.02	AU
TT=96h

min:
a=0.2	AU
TT=12h

Forbush decrease	
”typical”	 range	of	
amplitudes	 cca 1-
15%

Estimation	based	on	theoretical	 consideration Estimation	based	on	observational	 consideration

estimation	of	the	diffusion	coefficient	 range	based	
on	the	empirical	 distribution	of	t/a^2	for	MCs	
derived	 from	Richardson	&	Cane	 (2010)	list

estimated range for the diffusion coefficient:
Dmin=7*1017 cm2/s

Dmax=1,2*1020 cm2/s

estimated range for the diffusion coefficient:
Dmin=7*1016 cm2/s

Dmax=2,4*1020 cm2/s

D	=	1018 cm2/s D	=	1018 cm2/s

Typical	D	for	unperturbed	solar	wind:
D	~	1021 cm2/s



Forbush decrease	 amplitude	 vs	transit	time

Forbush decrease	 measurements	 on	Earth	(R~10GV))	shifted	to	satellite	 values	 (R=0GV)	using	empirical	 formula	
from	Cane	 (2000)

D=1018 cm2/s

a=0.05	AU

The	model	vs	observation:	ground	based	measurements	at	Earth

data	source:
IZMIRAN	database	
(courtesy	of	A.	Belov)
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Fig. 8. Decrease in the C detector versus MC time of flight. Red circles,
blue up triangles, and green down triangles represent type 1, 1*, and 2,
respectively. The solid line represents a linear fit to type 1.

between close flux and MC size as well, where the closer the
flux, the larger the MC.

According to this idea, of MCs as globally closed magnetic
structures, GCR can be used as a probe to infer to which de-
gree the MC is closed. As has been pointed out by Richardson &
Cane (2011), MCs may be an effective barrier to exclude GCR,
but some of them can enter MCs by different mechanisms, for
example by diffusion. Assuming a roughly constant GCR diffu-
sion rate, the depth of FDs probably decreases as the MC time
into solar wind grows. To test this assumption, the decrease in
C count rate is represented against the time of flight of the MCs.
This time was estimated assuming that the MC speed is con-
stant. We multiplied this speed by the observed MC distance to
the Sun. The result is presented in Fig. 8. A clear descending re-
lationship is observed in this plot. Longer travel times are related
with smaller decreases. The obtained linear correlation for type 1
events is –0.64. The decreasing trend of the count-rate percent-
age with heliocentric distance (Fig. 7d), and a roughly constant
speed with the distance to the Sun (Fig. 9) support the assump-
tion that the dependence of the FD depth with the MC time of
flight is a real MC lifetime effect.

This result does not contradict the findings by Shodhan et al.
(2000) about closed MCs. One of the selection criteria applied
in this work was that an FD has to be observed by the C detector.
This criterion can introduce a bias in our statistic. Assuming that
FDs are evidence of closed MCs, only the 57% of the MCs in
the list of Bothmer & Schwenn (1998) are MCs with their feet
anchored in the Sun. This percentage roughly agree with that ob-
tained by Shodhan et al. (2000) using counterstreaming electrons
as sign of closed MCs.

Since this is a statistical process, longer travel times will in-
crease the number of cosmic ray particles that manage to enter
the closed MC loops. Yet, this result itself does not exclude other
causes such as changes in the effectiveness of an MC as a bar-
rier for GCRs as can be inferred from the decreasing slope when
the MC magnetic flux is represented versus its heliocentric dis-
tance (Fig. 9c). This loss in effectiveness as a magnetic barrier
could be consistent with the eroded MC proposed by Ruffenach
et al. (2012), where some reconnection processes, are supposed
to occur at the MC nose.

As we commented above, the decrease in the count rate of
GCRs at low energies, above 50 MeV/n, can be used as addi-
tional signature of the MC to those proposed by Burlaga et al.
(1981). Using this criterion, we identified 35 MCs at different

Fig. 9. MC properties versus solar distance. From top to bottom, diam-
eter of the MC cross section, magnetic field intensity, magnetic flux,
and MC speed. Red circles, blue up triangles, green down triangles,
and violet squares represent type 1, 1*, 2, and 3, respectively. The con-
tinuous line in the upper panel represents the relationship between the
radial width and the solar distance proposed by Savani et al. (2012),
W = 0.14R + 0.04 .

heliocentric distances from the Helios 1 and 2 measurements.
According to the behaviour of the count rates by the A and C de-
tectors, we divided them into four categories.

In the following paragraphs, we address the question whether
this classification can find out differences among these types re-
garding the general properties of an MC. Their section diameter,
magnetic field intensity, magnetic flux, and the speed are repre-
sented versus the s/c heliocentric distance in Fig. 9. Types 1, 1*,
2, and 3 are represented by red circles, blue up triangles, green
down triangles, and violet squares, respectively. It is clear that
the MC properties seem to be independent of the event classi-
fication, except for the MC speed, because the MCs catalogued
as type 3 are faster. This allows us to consider all events in the
same category when studying MC properties.

Two results are readily inferred from Figs. 9a and 9b. The
size of MCs grows and the magnetic field intensity is reduced
with distance to the Sun. We estimated the MC size from the
diameter of the MC section computed from the spacecraft time
in the MC multiplied by the MC speed. Both results can be ex-
plained assuming an MC expansion because of a weakening of
the magnetic field and so a lower magnetic pressure when the
MC moves away from the Sun. Recently, Gulisano et al. (2010)
asserted that the MC expansion does exist and distinguished be-
tween two types of expansion, local and global. But, after check-
ing the MC magnetic flux (Fig. 9c), the previous assumption of
an expanding MC is not companied by magnetic flux conserva-
tion and a decreasing trend with distance is noticed. According
to this, magnetic flux is not conserved during MC expansion.

A146, page 8 of 9

Blanco	et	al	(2013a)

Measurements	 from	Helios	 I	and	II

D=10				cm^2/s18

a=0.05	AU

D=10				cm^2/s19

a=0.05	AU

D=10				cm^2/s17

a=0.05	AU

The	model	vs	observation:	spacecraft	measurements



diffusion	time	>	transit	time
(diffusion	of	particles	 starts	even	before	CME	liftoff)

Curve	shifted	by	24	hours

Possible	model	changes…

model

Blanco	et	al	(2013)	trend

Diffusion	is	still	 too	fast!!
=>	Additional	mechanism



CMEs	expand!

SOHO/LASCO	C2	image

Dumbovic et	al	(2012)

CME	expansion	observed	 remotely	 near	 the	Sun,	in	
IP	space	and	in	situ	measurements!



Could	expansion	 be	large	”enough”	 factor	to	counteract	diffusion??

U=6,5*R-2,4 MC	density	with	heliocentric	 distance,	Bothmer &	Schwenn,	1998

U=7*R-2 Solar	wind	density	with	heliocentric	 distance

At	0.3	AU
U	(CME)	=	117
U	(SW)	=	78
FD	=	10%

At	1	AU
U	(CME)	=	6,5
U	(SW)	=	7
FD	=	44%

30	%	decrease	 due	to	expansion

At	0.3	AU
a =	0.05	AU

FD	=	100%
(empty	MC)

At	1	AU
a =	0.05	AU

FD	=	10%

D=10				cm^2/s18 D=10				cm^2/s18

Typical	
transit	
time	60	h

90	%	increase	 due	 to	diffusion

A	very	rough	
estimation:

Expansion	can	”slow	
down”	the	diffusion	
by	roughly	30% D=10				cm^2/s18

a =	0.05	AU
TT	=	72	+	24	h

Expansion	vs	diffusion	– a	very	rough	estimate



expansion

diffusion

Calculated	 based	on	relative	
MC	(plasma)	density	decrease	

due	to	expansion	with	
respect	 to	solar	wind	density	
decrease	 due	to	expansion
(empirical	 relation	 from	

Bothmer &	Schwenn,	1998)

Calculated	 based	on	our	
model	 for	the	same	

distance/time	 as	above

Expansion	vs	diffusion	– a	very	rough	estimate

1

3

.	.

ratio

density	
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density	
increases



A	very	rough	estimation:
Expansion	can	”slow	down”	the	

diffusion	by	roughly	30%

D=1018 cm2/s
a =	0.05	AU
TT	=	72	+	24	h

Expansion	vs	diffusion	– a	very	rough	estimate



CONCLUSIONS:

diffusion-based	analytical	model	in	present	form	qualitatively	agrees	with	
observation,	but	quantitatively	suffers	from	several	drawbacks		

The	qualitative	aspect	of	the	model	could	be	improved	by	including	observable	
facts	regarding	CMEs	(e.g.	expansion)

Thank	you	for	your	attention!


