The electronics of the HEPD of the CSES experiment

Valentina Scotti - INFN Napoli

Outline of the talk

• The China Seismo Electromagnetic Satellite mission
 • The High Energy Particle Detector of CSES
 • Description of the instrument and its electronics
 • Status and plans

XXV European Cosmic Ray Symposium - 4-9 September 2016 - Torino
China Seismo Electromagnetic Satellite (CSES) aims to contribute to the monitoring of earthquake-related electromagnetic emission from the ionosphere. This space mission will study seismic precursors of electromagnetic nature and their correlation with the geophysical activity.
China Seismo Electromagnetic Satellite (CSES) aims to contribute to the monitoring of earthquake-related electromagnetic emission from the ionosphere. This space mission will study seismic precursors of electromagnetic nature and their correlation with the geophysical activity.

The space represents a privileged place for the statistical study of pre-seismic effects, thanks to the possibility of covering large areas simultaneously.

The launch is scheduled in 2017 for an expected lifetime of 5 years.
China Seismo Electromagnetic Satellite (CSES) aims to contribute to the monitoring of earthquake-related electromagnetic emission from the ionosphere. This space mission will study seismic precursors of electromagnetic nature and their correlation with the geophysical activity.

The space represents a privileged place for the statistical study of pre-seismic effects, thanks to the possibility of covering large areas simultaneously.

The launch is scheduled in 2017 for an expected lifetime of 5 years.

98° Sun-synchronous circular orbit at 500 km of altitude with two different orbital working zones:
• payload operating zone: instruments will collect measurements in the latitude range of ± 65°
• platform adjustment zone: at higher latitudes all detectors will be switched off, in order to perform activities of satellite attitude and orbit control system

3-axis attitude stabilized satellite based on CAST2000 platform
Mass = 730 kg
Peak power consumption = 900 W
Project Objectives of CSES

• to study the ionospheric perturbations possibly associated with earthquakes
• to explore new approaches for short-term prediction and theoretic studies on the mechanism of earthquake preparation processes
• to measure Cosmic Ray (CR) in an energy range below the one which has been studied so far by current CR space missions (PAMELA, AMS-02)
Project Objectives of CSES

• to study the ionospheric perturbations possibly associated with earthquakes
• to explore new approaches for short-term prediction and theoretic studies on the mechanism of earthquake preparation processes
• to measure Cosmic Ray (CR) in an energy range below the one which has been studied so far by current CR space missions (PAMELA, AMS-02)

• to check the reliability of the electromagnetic satellite earthquake monitoring system by using new techniques and equipments
• to obtain world-wide data of the electromagnetic field, plasma and energetic particles in space environment
• to provide a good basis for a space-ground system in earthquake monitoring in the near future in China

• to extract electromagnetic information associated possibly with the earthquakes of $M_s \geq 6$ in Chinese territory and that of $M_s \geq 7$ in the global scale
• to analyze seismo-ionospheric perturbations in order to test the possibility for short-term earthquake forecasting with satellite observation
Instruments onboard CSES

Measurements

- Electrical and magnetic fields and their perturbations in ionosphere
- Disturbance of plasma in ionosphere
- Flux and energy spectrum of the particles in the radiation belts
- Profile of electronic content

Instruments

- Search-Coil magnetometer
- Fluxgate magnetometer
- Electrical field detector
- Plasma analyzer
- Langmuir probe
- High Energy Particle Detector (HEPD)
- GPS occultation receiver
- Tri-frequency transmitter
Instruments onboard CSES

Measurements
- Electrical and magnetic fields and their perturbations in ionosphere
- Disturbance of plasma in ionosphere

Instruments
- Search-Coil magnetometer
- Fluxgate magnetometer
- Electrical field detector
- Plasma analyzer
- Langmuir probe
- High Energy Particle Detector (HEPD)
- GPS occultation receiver
- Tri-frequency transmitter

Profile of electronic content
Instruments onboard CSES

Measurements

Electrical and magnetic fields and their perturbations in ionosphere

Disturbance of plasma in ionosphere

Flux and energy spectrum of the particles in the radiation belts

Profile of electronic content

Instruments

Search-Coil magnetometer
Fluxgate magnetometer
Electrical field detector

Plasma analyzer
Langmuir probe

High Energy Particle Detector (HEPD)

GPS occultation receiver
Tri-frequency transmitter

HEPD space physics:
- composition and energy spectra of galactic and solar particles
- solar-terrestrial environment (heliosphere and magnetosphere), fundamental for Space Weather
Scientific objectives of HEPD

The HEPD will study low energy Cosmic Rays (CR) in the energy range 3 - 300 MeV

- separate electrons and protons identifying electrons within a proton background (10^{-5}-10^{-3})
- identify nuclei up to Iron

Expected count rates for electrons (3- 200 MeV) and protons (30 – 300 MeV) along the CSES orbit

Expected acceptance for protons and electrons
Scientific objectives of HEPD

The HEPD will study low energy Cosmic Rays (CR) in the energy range 3 - 300 MeV

- separate electrons and protons identifying electrons within a proton background (10^{-5}-10^{-3})
- identify nuclei up to Iron

The high-inclination orbit allows the telescope to detect particles of different nature during its revolution: galactic CR, Solar Energetic Particles, particles trapped in the magnetosphere.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy range</td>
<td>Electron: 3-100 MeV</td>
</tr>
<tr>
<td></td>
<td>Proton: 30-200 MeV</td>
</tr>
<tr>
<td>Angular resolution</td>
<td><8° @ 5 MeV</td>
</tr>
<tr>
<td>Energy resolution</td>
<td><10% @ 5 MeV</td>
</tr>
<tr>
<td>Particle Identification</td>
<td>>90%</td>
</tr>
<tr>
<td>Maximum Omni-directional Flux</td>
<td>10^7 cm^{-2}s^{-1}sr^{-1} (accepted by trigger before pre-scaling)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-10 °C - + 35 °C</td>
</tr>
<tr>
<td>Mass (including electronics)</td>
<td>< 43 kg</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>< 43 W</td>
</tr>
<tr>
<td>Scientific Data Bus</td>
<td>RS-422</td>
</tr>
</tbody>
</table>
The HEPD components

Silicon tracker: two planes of double-side silicon micro-strip detectors placed on the top of the detector in order to provide the direction of the incident particle limiting the effect of Coulomb multiple scattering on the direction measurement
The HEPD components

Silicon tracker: two planes of double-side **silicon micro-strip detectors** placed on the top of the detector in order to provide the direction of the incident particle limiting the effect of Coulomb multiple scattering on the direction measurement.

Trigger: a layer of **thin plastic scintillator** divided into six segments.
The HEPD components

Silicon tracker: two planes of double-side **silkon micro-strip detectors** placed on the top of the detector in order to provide the direction of the incident particle limiting the effect of Coulomb multiple scattering on the direction measurement.

Trigger: a layer of **thin plastic scintillator** divided into six segments.

Calorimeter: a tower of 16 layers of **plastic scintillator** planes followed by a **3x3 matrix of inorganic scintillator (LYSO)**
The calorimeter volume (about $20 \times 20 \times 40 \text{ cm}^3$) is surrounded by 5mm thick plastic scintillator planes: VETO.

All the scintillator detectors (trigger, calorimeter and VETO) are read out by photomultiplier tubes (PMTs).

Silicon tracker: two planes of double-side silicon micro-strip detectors placed on the top of the detector in order to provide the direction of the incident particle limiting the effect of Coulomb multiple scattering on the direction measurement.

Trigger: a layer of thin plastic scintillator divided into six segments.

Calorimeter: a tower of 16 layers of plastic scintillator planes followed by a 3x3 matrix of inorganic scintillator (LYSO)
The HEPD components

The calorimeter volume (about $20 \times 20 \times 40 \text{ cm}^3$) is surrounded by 5mm thick plastic scintillator planes: VETO.

All the scintillator detectors (trigger, calorimeter and VETO) are read out by photomultiplier tubes (PMTs).

4 HEPD models: Electrical, Mechanical&Thermal, Qualification (QM) and Flight Models (FM).

Silicon tracker: two planes of double-side silicon micro-strip detectors placed on the top of the detector in order to provide the direction of the incident particle limiting the effect of Coulomb multiple scattering on the direction measurement.

Trigger: a layer of thin plastic scintillator divided into six segments.

Calorimeter: a tower of 16 layers of plastic scintillator planes followed by a 3×3 matrix of inorganic scintillator (LYSO).
The HEPD electronics

The electronics can be divided in three blocks:

1. Tracker
2. Scintillator detectors
3. Global control and data managing

Each block includes power chain for bias distribution and a data acquisition and processing chain. The main power supply provides the low voltages to the detector electronics and the high voltages to PMTs and silicon modules.
The electronics can be divided in three blocks:

1. **Tracker**
2. **Scintillator detectors**
3. **Global control and data managing**

Each block includes power chain for bias distribution and a data acquisition and processing chain. The main power supply provides the low voltages to the detector electronics and the high voltages to PMTs and silicon modules.

- embedded “Hot/Cold” redundancy
- -40°C to +85°C operating range
- max data transfer rate from satellite = 50 GB per day

Front view of the QM: the trigger system with its six segments is visible.

Side view of the QM calorimeter which shows the plastic scintillator planes. The PMTs are at the corners of each calorimeter plane.
The system is composed by front-end electronics and **four main boards**:

- **Data Acquisition (DAQ)**: manages all the scientific data of the HEPD
- **Trigger Board**: manages the analog signals coming from the PMTs and generates trigger signals needed for data acquisition
- **CPU**: controls the detector and communicates with the platform of the satellite via CAN BUS interface
- **Telemetry/Telecommand (TM/TC) Board**

The electronics and the silicon detector
The system is composed by front-end electronics and **four main boards**:

- **Data Acquisition (DAQ)**: manages all the scientific data of the HEPD
- **Trigger Board**: manages the analog signals coming from the PMTs and generates trigger signals needed for data acquisition
- **CPU**: controls the detector and communicates with the platform of the satellite via CAN BUS interface
- **Telemetry/Telecommand (TM/TC) Board**
The electronics components

The system is composed by front-end electronics and four main boards:

- **Data Acquisition (DAQ)**: manages all the scientific data of the HEPD
- **Trigger Board**: manages the analog signals coming from the PMTs and generates trigger signals needed for data acquisition
- **CPU**: controls the detector and communicates with the platform of the satellite via CAN BUS interface
- **Telemetry/Telecommand (TM/TC) Board**

The electronics and the silicon detector
1. The analog signal read out from the PMTs associated to scintillator detectors are transmitted directly to the Trigger Board.
1. The analog signal read out from the PMTs associated to scintillator detectors are transmitted directly to the Trigger Board.

2. Signals of each data processing block related to scintillators are managed by an FPGA which issues the FAST trigger signal needed to start the acquisition of the Tracker by DAQ.
1. The analog signal read out from the PMTs associated to scintillator detectors are transmitted directly to the Trigger Board.

2. Signals of each data processing block related to scintillators are managed by an FPGA which issues the FAST trigger signal needed to start the acquisition of the Tracker by DAQ.

3. After an handshake protocol, if the trigger is confirmed by DAQ, the Trigger Board sends Scintillators data to DAQ Board.
1. The analog signal read out from the PMTs associated to scintillator detectors are transmitted directly to the Trigger Board.

2. Signals of each data processing block related to scintillators are managed by an FPGA which issues the FAST trigger signal needed to start the acquisition of the Tracker by DAQ.

3. After an handshake protocol, if the trigger is confirmed by DAQ, the Trigger Board sends Scintillators data to DAQ Board.

4. Scintillators and Tracker data are processed by a dedicated DSP and the results are written on a DP-RAM waiting to be transferred to satellite via RS-422 on a CPU command.
Test and qualification campaign

Spring 2016: start of test and qualification campaign with the HEPD Qualification Model (QM)

- **Vibration test** at SERMS laboratory in Terni (PG) simulating launch and flight
- **Thermal and vacuum test** at SERMS laboratory simulating space environment
- **Beam test** carried out at Beam Test Facility of the "Laboratori Nazionali di Frascati" of INFN: electrons and positrons from 30 to 150 MeV

Objective: study the instrument response to electrons in the energy range of interest and to perform precise calibration of the calorimeter energy measurement for the QM. Beam test data are under analysis.
Status and plans

DONE

• The Electrical Model and the Structural and Thermal Model of the HEPD are in China and passed all the tests
• The Qualification Model (QM) of the HEPD has been built, assembled and integrated
• The HEPD QM was tested with electron beams at different energies
• The HEPD QM was submitted to vibration, thermal and vacuum test
• Development of the Flight Model (FM) is in progress at great speed
Status and plans

DONE

• The Electrical Model and the Structural and Thermal Model of the HEPD are in China and passed all the tests
• The Qualification Model (QM) of the HEPD has been built, assembled and integrated
• The HEPD QM was tested with electron beams at different energies
• The HEPD QM was submitted to vibration, thermal and vacuum test
• Development of the Flight Model (FM) is in progress at great speed

TO DO

• Calibration, test and qualification of the Flight Model (FM) with proton beam at Trento
• Delivery in China of QM (September) and FM (November)
• Test of QM in China
• Pre-flight test in China
• Launch campaign starting in June
• Commissioning post launch at CSES Ground Segment in Beijing
• Beam test of the QM after the redelivery
Status and plans

DONE
- The Electrical Model and the Structural and Thermal Model of the HEPD are in China and passed all the tests
- The Qualification Model (QM) of the HEPD has been built, assembled and integrated
- The HEPD QM was tested with electron beams at different energies
- The HEPD QM was submitted to vibration, thermal and vacuum test
- Development of the Flight Model (FM) is in progress at great speed

TO DO
- Calibration, test and qualification of the Flight Model (FM) with proton beam at Trento
- Delivery in China of QM (September) and FM (November)
- Test of QM in China
- Pre-flight test in China
- Launch campaign starting in June
- Commissioning post launch at CSES Ground Segment in Beijing
- Beam test of the QM after the redelivery

Scientific outcome from HEPD:
1. Radiation belt physics
2. Solar physics
3. EM field and plasma of Ionosphere
4. Seismo-associated phenomena
Spare slides
Among the possible anomalies generated by a seismic event, bursts of Van Allen belt electron fluxes in the magnetosphere have been repeatedly reported in literature by various experiments, though a statistical significance was always difficult to claim [1, 2, 3]. A recent study [4] presented a new search for correlation between the precipitation of low energy electrons (E > 0.3 MeV) trapped within the Van Allen Belts and earthquakes with magnitude above 5 Richter scale. The authors used 13 years of electron data measured by the NOAA POES satellites corresponding to about 18 thousands M>5 earthquakes registered in the NEIC catalog of the U.S. Geological Survey, and found a correlation peak with significance of 5.7 standard deviations.

The HEPD will study the temporal stability of the inner Van Allen radiation belts, investigating precipitation of trapped particles induced by magnetospheric, ionospheric and tropospheric EM emissions, as well as by seismo-electromagnetic disturbances. The HEPD scientific scope, besides monitoring the precipitation of trapped particles in the magnetosphere, is studying the low energy component of cosmic rays.

CSES/Limadou will repeat the measurements of the two WIZARD/NINA missions (similar orbit, same energy window), which flew over the years 1998 – 2003, in a different period of the solar cycle, and will complement the cosmic ray measurements of PAMELA and AMS-02 at low energy. For its specific nature, CSES will be a powerful instrument for the Space Weather in the incoming solar cycle.
Main electronics boards

Data Acquisition (DAQ) : manages the scientific data of detector.
- Acquires of Trigger signal from PMT/Trigger board
- Manages hybrid circuits on the silicon planes
- Acquires silicon planes data
- Computes of PMTs data & Silicon planes data
- Data compression
- Transmits scientific data on the scientific data link

Trigger Board: manages the analog signals coming from the PMTs and generates trigger signals needed by other boards.
- Acquires the PMTs analog signal using EASIROC Integrated Circuits
- Converts the EASIROC readout signals into digital signals
- Allows the DAQ board to read the EASIROC digital output
- Allows the CPU to configure the EASIROC
- Generates and transmits “slow” event trigger signals manipulating the “fast” trigger signals coming from EASIROC
- Allow the CPU to configure the “slow” trigger generation algorithm

CPU : controls the detector and communicates with the platform of the satellite via CAN BUS interface.
- Communicates with Satellite OBDH computer via CAN bus
- Stores non volatile information
- Manages, via internal slow control links bus of TM/TC and LVPS control board, Trigger Board and DAQ
- Manages system diagnostic routines
- Manages system configuration
- System monitor