Observing the TeV γ -ray sky with the High Altitude Water Cherenkov observatory

Harm Schoorlemmer, on behalf of the HAWC - collaboration

The HAWC observatory

Site specifications

- 4100 m above sea level
- Mexico, Sierra Negra, Lat. +19°
- **300 water-Cherenkov tanks**
- Full array operational since March 2015 22000 m², with 57% coverage

The water Cherenkov detectors

- 200 000L of purified water
- 4 PMTs: one central 10" PMT surrounded by three 8" PMTs
- Signals measured using a Time to Digital Convertor

Shower type identification

γ-rays produce an

electromagnetic cascade:

- Very little to no muons
- Smooth lateral distribution around the impact point

Atomic nuclei generate "hadronic" cascade:

- Significant amount of primary energy into muon production
- Particle distribution on ground irregular

Shower type identification

PINC

Sum over the deviations from the average in an annulus around the impact point.

Measure of the smoothness of the lateral distribution.

Shower type identification

1/Compactness:

Largest signal outside the impact region compared to the number of pmt hit: Qmax/Nsp

Sensitive to subshowers & muons

Shower type identification using the crab-region

PINC

1/Compactness

Distribution in the presence of a γ -ray source follow a different distribution than background regions

Angular reconstruction performance using the crab

Improvements on the shower reconstruction algorithms

Pass 3

5

Performance: Point Source Sensitivity

- 15 times more sensitive than previous generation WCD (Milargro)
- Above 10 TeV more sensitive than current IACTs for point sources within a year

The TeV γ -ray sky observed by HAWC

- 340 days from November 2014 November 2015
- $\sim 2/3$ of the full sky, every day!!!
- >95 % uptime

Galactic sources: inner galactic plane (403 days)

Galactic sources: Cygnus region (403 days)

New TeV source: 2HWCJ2006+341 > 6σ pre-trails

Galactic sources: Cygnus region (403 days)

New TeV source: 2HWC J2006+341 > 6σ pre-trails

MGRO J2013+403 resolved into two sources: - 2HWC J2020+403 (VER J2019+407)

-2HWC J2031 + 4026 (TeV J2032+4130), a PWN or binary?

Gal. longitude (deg)

M. Ackermann et al Sci. (2011)

Galactic sources: Cygnus region (403 days)

New TeV source: 2HWC J2006+341 > 6σ pre-trails

MGRO J2013+41 resolved into two sources: - 2HWC J2020+403 (VER J2019+407) -2HWC J2031 + 4026 (TeV J2032+4130), a PWN or binary?

2HWC J2019+367 (MGRO J2019+37 VER J2019+368)

Galactic sources: HAWC source confirmed by Veritas

Galactic sources: Nearby old pulsars (>100 kyr)

Geminga Region, Disk 2 deg, index -2.2

Galactic sources: Nearby old pulsars

Energy budget ~10⁴⁴ erg: the emission is not coming from the standard PWN, but from emission from electrons the ISM
Potential source for the e⁺/e⁻ excess observed near Earth => Using energy dependent morphology to constrain e+e- flux at Earth

Extra-galactic sources: Mrk421

Monitoring the variations in the light curves on a daily basis

Correlation studies with Fermi-LAT, Swift-BAT, FACT ongoing

Extra-galactic sources: Mrk501

First ATEL send out on 6th of April 2016

~2 Crab units, elevated flux for ~2 days

Fermi-Bubbles

- Currently no excess found
- Upper-limits set at 95% confidence level
- <u>Improvements expected</u>: improvement in the reconstruction of small showers, more accurate energy estimator, more data

Dark Matter

- Examples results of 14 stacked dSph, M31, Virgo for annihilation and decay in $\tau^+ \tau^-$: Paper in progress (stay tuned!)
- Improvements expected: More dSph, better event reconstruction at lowest and highest energies, more data

Follow-up on Ligo's Gravitational Waves

GW151226

- 2015 Dec 26 03:38:53.6 UTC
- >5 sigma
- 14.2M⊙ + 7.5M⊙ ➡ 21.8M⊙
- z=0.09 +0.03 -0.04

In HAWC we found a transient 9.93 seconds after the LIGO trigger with a duration of 10 s with 5 σ pre-trial but with a post-trial p=0.08 it is compatible with background.

Cosmic rays Anisotropy

Small-scale (< 60°) Large-scale removed (dipole,quadrupole,+octupole) 10° smoothing applied 86 billion events over 181 days

In press with Astrophys. J. (arXiv 1408.4805 [astro-ph.HE])

3 significant excesses

- A strongest, harder spectrum than bkg, at ~10 TeV consistent with Milagro
- B most extended
- C confirms Argo-YBJ observation

Cosmic rays spectrum

All particle cosmic ray spectrum from 0.01 - 1 PeV

Strict cuts on zenith angle and core location

Consistency with other experiments

Summary

2/3 of the sky observed with full sensitivity over one year:

- Many (>10) new unknown sources
- Confirmed known extended sources with higher accuracy
- Able to follow-up and generate transient events alerts
- Constrains on Fermi-Bubbles and DM candidates

Papers coming up:

- Source catalogue
- Dark matter
- Crab paper
- Old nearby pulsar paper
- Light curves...

What to expect next?

- More data
- Improvement in reconstruction
- High Energy extension:
 - Sparser array with 350 smaller tanks
 - Installation began August 2016 and will be finished early 2017
- Development for a next generation observatory in the southern hemisphere

Thank you for your attention!

Galactic sources: "Executioner" (403 days)

Cosmic rays

Sun shadow

Moon shadow

