

From Observations near the Earth to the Local Interstellar Spectra

agenzia spaziale italiana

S. Della Torre (INFN-Mib), D. Grandi (INFN-Mib), G. La Vacca (INFN-Mib), M. Gervasi (INFN-Mib), G. Johannesson (Uni Iceland), **N. Masi** (INFN-Bo), I.V. Moskalenko (Stanford), E. Orlando (Stanford), T.A. Porter (Stanford), L. Quadrani (INFN-Bo), P.G. Rancoita (INFN-Mib), D. Rozza (INFN-Mib)

Nicolò Masi

Bologna University and INFN – 7 September 2016

Topics

Towards a unified picture of CRs production and propagation by means of GALPROP and HelMod for solar modulation:

- Astrophysical uncertainties: the MCMC approach to GALPROP v55
- Protons, Helium and Antiprotons LIS from GALPROP + HelMod synergy
- Interstellar Spectra: AMS-02 vs Voyager-1

The Propagation Scheme in the Milky Way

MCMC + GALPROP Approach

- 1. The Monte-Carlo-Markov-Chain interface to **GALPROP v55** was developed in Bologna from CosRay-MC and COSMOMC package, embedding GALPROP framework into the MCMC scheme;
- 2. An iterative procedure is used to sample GALPROP cosmic rays production and propagation parameters using AMS-02 data as observational constraints, exploring a very large parameter space;
- 3. The solar modulation is made using numerical functions based on HelMod;

- GALPROP accuracy was tested at the % level, checking solution stability and introducing new "smoothing features";
- 5. The experimental observables used in the MCMC scan include all published AMS-02 data on protons, Helium, B/C ratio and electrons, while positrons and antiprotons are excluded.

Precision measurement of Boron-to-Carbon Ratio with AMS-02...**, Valerio Formato**

MCMC Matrix

Using AMS-02 high precision data we can easily constrain, for the first time, CR propagation and the galactic physics

Þ

 R_0

Ś

- D_o: diffusion coefficient δ : diffusion coefficient index z_{h} : half size of the Halo dv /dz: convection velocity gradient Va : Alfvén velocity Vc : convection velo city
 - Ro: diffusion break position

CR Physics Improvements

Before AMS-02

	Unit	Error (%)
Z	kpc	50%
D ₀ /10^28	cm^2s^{-1}	100%
δ		60%
V _{Alfven}	$km s^{-1}$	90%
V _{0conv}	$km s^{-1}$	100%
dV_C/dz	$km s^{-1} kpc^{-1}$	100%

- Before AMS-02 we were not able to fix the CR propagation physics: the parameters lied in very wide ranges.
- With AMS-02 data is finally possible to achive a consistent best fit: the errors associated to the fundamental propagation parameters z, D_{0xx} , $\delta_{1,2}$ are greatly reduced.
- We still have some degeneracies/uncertainties which afflict secondaries predictions.

After AMS-02

Error (%)	Improvement factor $\varepsilon_{before}/\varepsilon_{after}$
5%	10
5%	20
5%	12
7%	13
6%	16
5%	20

A factor 10-20 of improvement for fundamental parameters

CR Physics Parameters: a DCR scenario

Simultaneous inclusion of diffusion, convection and reacceleration is required to reproduce AMS-02 measurements

Ν	Parameters	Best Value	Units	1σ Mean Error	% Error	Scan Range
1	Z	4.0	kpc	0.2	5	[1-10]
2	$D_0/10^{28}$	4.3	cm^2s^{-1}	0.2	5	[1-10]
3	δ	0.36	-	0.02	5	[0.3-0.9]
4	R_D	4.2	GV	0.4	10	[1-8]
5	V_{Alfven}	27	$km\cdot s^{-1}$	2	7	[0-40]
6	V_{conv}	12.7	$km \cdot s^{-1}$	0.8	6	[0-20]
7	dV_{conv}/dz	$10.0 k_{\odot}$	$m \cdot s^{-1} k p c^{-1}$	0.5	5	[0-20]

HelMod: a Comprehensive Treatment of the Cosmic Ray transport through the Heliosphere**, Davide Grandi**

Ν	Parameters	Protons	Helium	Explored Range
1	R_1	$7 \ \mathrm{GV}$	$9 \mathrm{GV}$	[4-10]
2	R_2	$360~{\rm GV}$	$330 \ \mathrm{GV}$	[300-400]
3	γ_1	1.74	1.89	[1.5-2.1]
4	γ_2	2.48	2.42	[2.1-2.7]
5	γ_3	2.33	2.25	[2-2.4]

Once defined a consistent parameter space, a methodical calibration employing the **HelMod Model** was performed, involving injection spectra and solar parameters Forthcoming Results: Protons LIS

Low Solar Activity

High Solar Activity

Recent AMS-02 results: impressive agreement between data and HelModmodulated LIS from GALPROP

Analytic Formula for 0.45 GV < R< 20000 GV:

$$F(R) \cdot R^{2.7} = a + \frac{b}{R} + \frac{c}{d+R} + \frac{e}{f+R} + \frac{g}{h+R}$$

High Energy Comparison

Helium LIS

Low Solar Activity

High Solar Activity

Recent AMS-02 results: impressive agreement between data and HelModmodulated LIS from GALPROP

Analytic Formula for 1.5 GV < R< 20000 GV: $c \quad d \quad f \quad h$

$$(R) \cdot R^{2.7} = a + b * R + \frac{c}{R} + \frac{a}{e+R} + \frac{f}{g+R} + \frac{h}{k+R}$$

High Energy Comparison

Antiproton LIS

Low Solar Activity

High Solar Activity

The Antiproton LIS is substantially compatible with AMS-02.

Tiny discrepancies w.r.t. AMS-02 high precision data could be due to:

- residual astrophysical uncertainties
- nuclear cross section uncertainties
- peculiar propagation effects or variation of primary p and He spectra in the Galaxy

Ultra-low energy physics

AMS – Voyager1 interplay

Voyager 1 in the interstellar space

Voyager 1 131.0 AU 19.7 billion km

Voyager 2 107.7 AU 16.2 billion km ~2 years to interstellar space?

Launched in 1977!

Simulated proton and He LISs have been successfully compared to Voyager1

Proton LIS vs Voyager-1

Helium LIS vs Voyager-1

The LISs show a good agreement with Voyager-1 data:

- Helium perfectly reproduces the shape of the interstellar measurements
- Protons fit Voyager-1 very well, in particular in the region above 100-200 MeV

Low energy physics effects at this scale are not included nor calibrated in GALPROP, so this overall agreement is very encouraging and susceptible to future improvements

A new era for astroparticle physics

- AMS-02 data allow a deeper understanding of the «High Energy Universe» and do put the models to the test, highlightning theoretical inaccuracies and driving the models to a precision astroparticle physics;
- Fitting AMS-02 data with the ultimate **GALPROP** framework together with the **HelMod** Model of Heliosphere, a precise and almost univocal propagation scheme was achieved, granting a unitary description of CR physics at the 1-2 % level for protons and Helium;
- Once fixed the CR propagation parameters, the secondary background for DM (and exotic) searches can be removed;
- The proposed LISs accommodate both the very low energy interstellar CR spectra measured by Voyager 1 and the high energy observations at Earth publicly released by BESS, Pamela, AMS-01 and AMS-02;
- Forthcoming papers will be devoted to the description of electrons and positrons LISs, Boron over Carbon ratio and Boron, Carbon and Oxygen spectra, when available from AMS-02.

backup

Low Solar Activity

AMS – Voyager1 interplay

Results: Spectra and Ratios Fits @ % level

